I am broadly interested in characterizing spatial patterns and processes through the use of quantitative geographic methods, which typically falls under the banners of spatial analysis and spatial statistics, geographic information science, and the emerging discipline of spatial data scienceMy work typically involves modeling human processes within urban environments and therefore also intersects with the disciplines of computational social science, and urban informaticsOverall, my research has targeted the development of multivariate spatial statistics and how they can be used to capture how relationships change by spatial and temporal contexts. This includes issues of theory, interpretation, scalability, and integration of traditional geographic models with novel "big" datasets, as well as applications in public health, crime, urban mobility, and transportation systems. I also participate in open source software development and building cyber-infrastructure to support my research and teaching and facilitate the replicability and reproducibility of the geographical sciences. Currently, I focus on two lines of inquiry: 

The first line of inquiry investigates how scale can be better captured in local multivariate statistical models, such as multiscale geographically weighted regression (MGWR). This work entails developing algorithms for both the inference of spatial relationships and the prediction of spatial observations. It also seeks to scale these methods, which are frequently computationally cumbersome, so that they can be used at higher resolutions (i.e., within cities) and for larger scopes (i.e., national and global). Ongoing research includes an application to modeling obesity rate across Phoenix and developing an open source Python implementation of MGWR.   

The second line of inquiry seeks to utilize spatial interaction models (SIM) to study urban mobility. Specifically, this work utilizes the high temporal frequency of new transport datasets, such as automatically collected taxi trips, to study the impacts of disruptions upon urban mobility. Ongoing research includes an application to extreme weather events and transport disruptions in New York City and the development of  an open source Python implementation of SIMs that scale to accommodate a large number of origin-destination pairs. 

I am working on a number of funded projects that have the potential to support graduate and post doctoral researchers. If you are interested in pursuing research under my supervision in one or more of the areas described above, please send me an email with: (1) your CV or resume; (2) a writing sample; (3) a code sample; and (4) a brief description of your background, career goals, research interests, and areas where these overlap with my research.

CV:

Degrees

  • Degree Type
    Ph.D
    Degree Details
    Geography, Arizona State University
  • Degree Type
    MA
    Degree Details
    Geography, CUNY Hunter College
  • Degree Type
    BA
    Degree Details
    History, University of Delaware

Current Students

Former Students

Related Students (Listed by Student on Student's Profile)

  • Victor Irekponor
  • Mengyu Liao
  • Ushashi Podder
Taylor Oshan
1129 Lefrak Hall
Department of Geographical Sciences
Email
toshan [at] umd.edu