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Abstract: This paper complies with the Quality Assurance Framework for Earth Observation 

(QA4EO) international guidelines to provide a metrological/statistically-based quality 

assessment of the Spectral Classification of surface reflectance signatures (SPECL) 

secondary product, implemented within the popular Atmospheric/Topographic Correction 

(ATCOR™) commercial software suite, and of the Satellite Image Automatic Mapper™ 

(SIAM™) software product, proposed to the remote sensing (RS) community in recent 

years. The ATCOR™-SPECL and SIAM™ physical model-based expert systems are 

considered of potential interest to a wide RS audience: in operating mode, they require 

neither user-defined parameters nor training data samples to map, in near real-time, a 

spaceborne/airborne multi-spectral (MS) image into a discrete and finite set of  

(pre-attentional first-stage) spectral-based semi-concepts (e.g., “vegetation”), whose 

informative content is always equal or inferior to that of target (attentional second-stage) 

land cover (LC) concepts (e.g., “deciduous forest”). For the sake of simplicity, this paper is 

split into two: Part 1—Theory and Part 2—Experimental results. The Part 1 provides the 

present Part 2 with an interdisciplinary terminology and a theoretical background. To 

comply with the principle of statistics and the QA4EO guidelines discussed in the Part 1, 
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the present Part 2 applies an original adaptation of a novel probability sampling protocol 

for thematic map quality assessment to the ATCOR™-SPECL and SIAM™ pre-classification 

maps, generated from three spaceborne/airborne MS test images. Collected metrological/ 

statistically-based quality indicators (QIs) comprise: (i) an original Categorical Variable 

Pair Similarity Index (CVPSI), capable of estimating the degree of match between a test 

pre-classification map’s legend and a reference LC map’s legend that do not coincide and 

must be harmonized (reconciled); (ii) pixel-based Thematic (symbolic, semantic) QIs 

(TQIs) and (iii) polygon-based sub-symbolic (non-semantic) Spatial QIs (SQIs), where all 

TQIs and SQIs are provided with a degree of uncertainty in measurement. Main 

experimental conclusions of the present Part 2 are the following. (I) Across the three test 

images, the CVPSI values of the SIAM™ pre-classification maps at the intermediate and 

fine semantic granularities are superior to those of the ATCOR™-SPECL single-granule 

maps. (II) TQIs of both the ATCOR™-SPECL and the SIAM™ tend to exceed 

community-agreed reference standards of accuracy. (III) Across the three test images and 

the SIAM™’s three semantic granularities, TQIs of the SIAM™ tend to be significantly 

higher (in statistical terms) than the ATCOR™-SPECL’s. Stemming from the proposed 

experimental evidence in support to theoretical considerations, the final conclusion of this 

paper is that, in compliance with the QA4EO objectives, the SIAM™ software product can be 

considered eligible for injecting prior spectral knowledge into the pre-attentive vision first 

stage of a novel generation of hybrid (combined deductive and inductive) RS image 

understanding systems, capable of transforming large-scale multi-source multi-resolution EO 

image databases into operational, comprehensive and timely knowledge/information products.  

Keywords: attentive vision; confusion matrix; degree of uncertainty in measurement; 

harmonization (reconciliation) of ontologies; land cover classification; multi-spectral image; 

overlapping area matrix; pre-attentive vision; preliminary classification; probability sampling; 

quality indicators of operativeness; categorical and spatial accuracy of thematic maps 

 

Acronyms and Abbreviations 

ADS:  Airborne Digital Scanner 

ATCOR™:  Atmospheric/Topographic Correction™  

ASQI:  Average Spatial Quality Indicator 

B:   (Visible) Blue  

CEOS:  Committee on Earth Observation Satellites 

CMTRX:  (Square and sorted) Confusion Matrix 

CVPSI:  Categorical Variable Pair Similarity Index 

EO:   Earth Observation 

FEOQI:   Fuzzy Edge Overlap Spatial Quality Indicator 

G:    (Visible) Green  

GEOBIA:   Geographic Object-Based Image Analysis 
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GEOOIA:   Geographic Object-Observation Image Analysis 

GEOROI:  Geographic Region Of Interest 

GIS:  Geographic Information System 

HR:   High Resolution  

HRVIR:  High Resolution Visible & Infrared 

IR:    Infra-Red 

IRS:   Indian Remote sensing Satellite 

LAI:   Leaf Area Index 

LC:   Land Cover 

LCC:  Land Cover Change 

LISS:  medium resolution Linear Imaging Self-Scanner 

MIR:   Medium infra-red 

MODIS :  Moderate Resolution Imaging Spectroradiometer 

MS:   Multi-Spectral 

OAMTRX:  Overlapping Area Matrix  

OSQI:  Oversegmentation Spatial Quality Indicator 

QA4EO:   Quality Accuracy Framework for Earth Observation 

QI:    Quality Indicator 

QIO:   Quality Indicator of Operativeness 

Q-SIAM™:  QuickBird-like Satellite Image Automatic Mapper™ 

R:    (visible) Red  

RS:    Remote Sensing 

RS-IUS:   Remote Sensing Image Understanding System 

SIAM™:   Satellite Image Automatic Mapper™ 

SIRS:  Simple random sampling 

SPECL:   Spectral Classification of surface reflectance signatures  

SPOT:   Satellite Pour l'Observation de la Terre 

SQI:  Spatial Quality Indicator 

S-SIAM™:  SPOT-like Satellite Image Automatic Mapper™ 

SURF:   Surface Reflectance 

TIR:  Thermal Infra-Red 

TM:   Trademark 

TO:   Target image-Object 

TOA:   Top-Of-Atmosphere  

TOARF:   Top-Of-Atmosphere Reflectance 

TQI:  Thematic Quality Indicator 

USGS:   US Geological Survey 

USQI:  Undersegmentation Spatial Quality Indicator 

VHR:   Very High Resolution 
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1. Introduction 

One visionary goal of the Quality Assurance Framework for Earth Observation (QA4EO) 

guidelines, delivered by the international Group on Earth Observations (GEO)-Committee on Earth 

Observation Satellites (CEOS) [1,2], is to develop information processing systems capable of transforming 

automatically, i.e., without user interactions, large-scale multi-source multi-resolution Earth observation 

(EO) image databases into “operational, comprehensive and timely knowledge/information  

products” [1–3], at spatial extents ranging from local to global scale [4].  

In compliance with the QA4EO guidelines [2], this paper pursues a quality assessment of two 

operational (turnkey) software products, suitable for automatic preliminary classification  

(pre-classification [5]) of spaceborne/airborne Earth Observation (EO) multi-spectral (MS) images: the 

Spectral Classification of surface reflectance signatures (SPECL) and the Satellite Image Automatic 

Mapper™ (SIAM™). The former is implemented as a non-validated secondary product within the 

popular Atmospheric/Topographic Correction™ (ATCOR™)-2/3/4 commercial software toolbox [6–9]. 

The latter has been presented in recent years in the remote sensing (RS) literature [10–19], where 

enough information is provided for the SIAM™ implementation to be reproduced [11,17].  

To the best of these authors' knowledge, the ATCOR™-SPECL and SIAM™ software products are, 

to date, the only two pre-attentive vision expert systems (deductive inference systems for pre-attentional 

vision) in operating mode made available to the RS community for “fully automatic” near real-time 

pre-classification of radiometrically calibrated spaceborne/airborne MS images, irrespective of their 

spatial resolution. The term “pre-attentive vision” is used herein as a synonym of “low-level vision”, 

according to the terminology of neural science [5,10–19] (refer to the Part 1, Section 2.3 [20]). “Fully 

automatic” means that the information processing system requires neither user-defined parameters nor 

training data samples to run [21] (refer to the Part 1, Section 4.1 [20]). 

For the sake of simplicity this paper is split into two: Part 1—Theory [20] and  

Part 2—Experimental results.  

The Part 1 of this paper provides the present Part 2 with an interdisciplinary terminology  

and a theoretical background [20]. To cope with cognitive problems [22,23], like RS image 

understanding [24,25], the proposed terminology encompasses multiple disciplines, like philosophical 

hermeneutics [26,27], machine learning [22,23], artificial intelligence [28,29], computer vision [30] 

and human vision [5], in addition to the traditional RS jargon [31] (refer to the Part 1, Section 2 [20]). 

Based on theoretical considerations exclusively, the Part 1 concludes that the proposed assessment and 

comparison of the ATCOR™-SPECL and SIAM™ deductive pre-classifiers is appropriate, well-timed 

and of potential interest to a large portion of the RS readership.  

To comply with the principles of statistics and the QA4EO guidelines [1,2], recalled in the  

Part 1 [20], and with the GEO-CEOS land product accuracy validation criteria [3], the present Part 2 of 

this paper applies a novel probability sampling protocol for thematic map quality assessment, selected 

from the existing literature [32], to the ATCOR™-SPECL and SIAM™ pre-classification maps 

generated from three spaceborne/airborne MS test images. Main characteristics of the proposed 

probability sampling protocol are that [32]: (i) it introduces a novel Categorical Variable Pair 

Similarity Index (CVPSI) ∈ [0, 1], able to assess the degree of match between a pair of reference and 

test thematic map legends which, in general, do not coincide and must be harmonized before 
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comparison, (ii) its sample estimates are statistically valid (refer to the Part 1, Section 2.6 [20]) [24,25],  

(iii) two independent sets of metrological/statistically-based quality indicators (QIs) are generated from 

the test thematic map, namely, pixel-based thematic (semantic, categorical) quality indicators (TQIs) 

and polygon-based sub-symbolic (asemantic) spatial quality indicators (SQIs), and (iv) TQIs and SQIs 

are statistically significant, i.e., they are provided with a degree of uncertainty in measurement, in 

compliance with the principles of statistics and the QA4EO guidelines (refer to the Part 1, 

Section 3 [20]).  

Stemming from experimental evidence collected in the Part 2 and supported by theoretical 

considerations presented in the Part 1, conclusions of this paper may have an impact on the design and 

implementation of a novel generation of hybrid (combined deductive and inductive) RS image 

understanding systems (RS-IUSs) in operating mode, capable of coping with large-scale multi-source 

multi-resolution RS image databases [10–20].  

The rest of the present Part 2 is organized as follows. Section 2 presents the test data set.  

In Section 3, a probability sampling protocol is proposed for quality assessment of the ATCOR™-SPECL 

and SIAM™ pre-classification maps generated from the test image set. Section 4 reports on the 

comparison of QIs of operativeness (QIOs) estimated from the ATCOR™-SPECL and SIAM™ 

software products in operating mode. Conclusions are reported in Section 5. The Appendix presents 

two different formulations of the CVPSI.  

2. Test Image Set 

To assess the accuracy of pre-classification maps of EO images acquired across time, space and MS 

imaging sensors, two spaceborne high resolution (HR) MS test images and one airborne very high 

resolution (VHR) MS test image are selected and radiometrically calibrated, in accordance with: (i) the 

input data constraints of physical models (refer to the Part 1, Section 2.2 [20]), (ii) the calibration/ 

validation (Cal/Val) requirements of the QA4EO guidelines (refer to the Part 1, Section 3 [20]) and 

(iii) the GEO-CEOS land product accuracy validation criteria [3] (refer to Section 1). The three EO test 

images are described below (refer to Table 1).  

Table 1. Test data set. Acronyms: top-of-atmosphere (TOA) reflectance (TOARF), surface 

reflectance (SURF).  

Test image Sensor 
Radiometric 
Calibration 

Acquisition 
Date and Time 

Central Image, 
Geographic 
Coordinates 

Spatial 
Resolution 
(m) 

Swath 
Width 

Spectral 

Resolution (μm) 
per Band 

Spaceborne 
IRS-P6  

LISS-3 TOARF 
2006-06-13, 
10:15:05.83 

11°53′E, 45°8′N  
(Northern Italy) 

23.5 
141 × 
141 km 

1-G: 0.52–0.59,  
2-R: 0.62–0.68,  
3-NIR: 0.77–0.86, 
4-MIR: 1.55–1.70 

Spaceborne 
SPOT-4 

HRVIR TOARF 
2006-07-21, 
10:34:42 

10°10′E, 45°36′N  
(Veneto region, Italy) 

20 
60 × 60  
km 

1-G: 0.50–0.59,  
2-R: 0.61–0.68,  
3-NIR: 0.78–0.89,  
4-MIR: 1.58–1.75 

Airborne ADS-80 SURF 2007-09-01 
6°37′E, 46°06′N  
(East France) 

0.25 
64° 
(degrees) 

1-B: 0.420–0.492,  
2-G: 0.533–0.587,  
3-R: 0.604–0.664,  
4-NIR: 0.833–
0.920 
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(1). One spaceborne 23.5 m-resolution 4-band (visible green (G), visible red (R), near 

infra-red (NIR), medium infra-red (MIR)) Indian Remote sensing Satellite (IRS)-P6 

medium resolution Linear Imaging Self-Scanner (LISS)-3 image, acquired over the 

Veneto region of Italy (Venice lagoon) on 13 June 2006. The raw image is 

orthorectified and radiometrically calibrated into top-of-atmosphere (TOA) reflectance 

(TOARF) values (refer to the Part 1, Section 4.2.1 [20]), see Figure 1a. The scene is 

characterized by the presence of the Adriatic Sea in the east, the city of Venice in the 

northeast, agricultural land to the south and forested areas in the northwest. The  

IRS-P6 LISS-3 test image is unique in the scope of this work in that it is the only test 

image presenting clouds (in the top left portion of the image). This test image is input 

to the ATCOR™-SPECL single-granule pre-classifier (see Figure 1b, whose legend is 

shown in Table 2; courtesy of Daniel Schläpfer, ReSe Applications Schläpfer) and to 

the SPOT-like SIAM™ (S-SIAM™) three-granule pre-classification and three-scale 

segmentation software product (refer to the Part 1, Tables 3 and 4 [20]), see 

Figure 1c,d. The S-SIAM™ fine-granularity map legend is shown in Table 3. 

Figure 1. (a) False-color (R = MIR band, G = NIR band, B = Green band) IRS-P6 LISS-3 

image of Northern Italy (11°53′E, 45°8′N). Spatial resolution: 23.5 m. Acquisition time:  

13 June 2006 at 10:15:05.83. Orbit: 13 786. Frame: 37. Orthorectified and  

radiometrically calibrated into TOARF values. (b): Atmospheric/Topographic Correction  

(ATCOR™)-Spectral Classification of surface reflectance signatures (SPECL) map, 19 

spectral categories. Map legend: refer to Table 2. Courtesy of Daniel Schläpfer, ReSe 

Applications Schläpfer. (c): SPOT-like SIAM™ (S-SIAM™) pre-classification map at 

coarse semantic granularity, 15 spectral categories. Map legend: generated from Table 3. 

(d): S-SIAM™ pre-classification map at fine semantic granularity, 68 spectral categories. 

Map legend: refer to Table 3.  

(a) (b)
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Figure 1. Cont. 

(c) (d) 

Table 2. Preliminary classification map legend adopted by the ATCOR™-SPECL  

single-granule pre-classifier and consisting of 19 spectral categories [6], refer to the Part 1, 

Table 2 [20]. 

Index Spectral Category Pseudo-Color 

1 Snow/ice  
2 Cloud 
3 Bright bare soil/sand/cloud
4 Dark bare soil 
5 Average vegetation 
6 Bright vegetation 
7 Dark vegetation 
8 Yellow vegetation 
9 Mix of vegetation/soil 
10 Asphalt/dark sand 
11 Sand/bare soil/cloud 
12 Bright sand/bare soil/cloud
13 Dry vegetation/soil 
14 Sparse veg./soil 
15 Turbid water 
16 Clear water 
17 Clear water over sand 
18 Shadow 
19 Not classified (outliers) 
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Table 3. Preliminary classification map’s legend, adopted by the SPOT-like SIAM™  

(S-SIAM™) at fine semantic granularity, consisting of 68 spectral categories (refer to the 

Part 1, Table 4 [20]). Pseudo-colors of the spectral categories are grouped on the basis of 

their spectral endmember (e.g., “bare soil or built-up”) or parent spectral category (e.g., 

“high” leaf area index (LAI) vegetation types). The pseudo-color of a spectral category is 

chosen so as to mimic natural colors of pixels belonging to that spectral category. This 

legend gives a clue about the symbolic parent-child relationships supported by S-SIAM™ at 

different semantic granularity levels (refer to the Part 1, Figure 4 [20]). For example, a  

line-specific OR-combination of the 68 “child” spectral categories detected at the fine 

semantic granularity level across the 10 lines of Table 3 would provide 10 “parent” spectral 

categories at a coarser level of semantic granularity. Since it deals with symbolic reasoning, 

then this semantic aggregation is inherently subjective (equivocal) in nature, refer to the 

Part 1, Section 2.1 [20].  

Spectral Category Pseudo-Color 

“High” leaf area index (LAI) vegetation types (LAI values decreasing left to right)  

“Medium” LAI vegetation types (LAI values decreasing left to right)  

Shrub or herbaceous rangeland  

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland)  

Bare soil or built-up  

Deep water, shallow water, turbid water or shadow  

Thick cloud and thin cloud over vegetation, or water, or bare soil  

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil  

Snow and shadows snow  

Unknowns  

(2). One spaceborne 20 m-resolution 4-band (G, R, NIR, MIR) Satellite Pour l’Observation 

de la Terre (SPOT)-4 High Resolution Visible & Infrared (HRVIR) image, acquired 

over the Veneto region of Italy across the city area of Verona on 2006-07-21. The raw 

image is orthorectified and radiometrically calibrated into TOARF values, see 

Figure 2a. The scene is distinguished by the mountains dominating the northern part of 

the image, the city area of Verona to the southern portion of the image and a mixture 

of agricultural and built-up land to the southeast. This test image is input to the  

ATCOR™-SPECL single-granule pre-classifier (see Figure 2b, whose legend is shown 

in Table 2; courtesy of Daniel Schläpfer, ReSe Applications Schläpfer) and to the  

S-SIAM™ three-granule pre-classification and three-scale segmentation software 

product (refer to the Part 1, Tables 3 and 4 [20]), see Figure 2c,d. The S-SIAM™  

fine-granularity map legend is shown in Table 3. Since the SPOT-4 HRVIR test image 

is similar to the IRS-P6 LISS-3 test image in terms of spectral resolution, spatial 

resolution and acquisition time, while the surface area depicted in the former is a 

subset of that of the latter, the difference between the ATCOR™-SPECL and SIAM™ 

mapping results collected from these two test cases are expected to be (to some 

degree) correlated (aligned). If verified experimentally, this conjecture would prove, 

first, the robustness of the two alternative MS image mapping systems to small 
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changes in spectral resolution and image acquisition conditions and, second, the 

consistency of the proposed protocol for thematic map quality assessment.  

Figure 2. (a) False-color (R = MIR band, G = NIR band, B = Green band) SPOT-4 

HRVIR image of the Veneto region, Italy (10°10′E, 45°36′N). Spatial resolution: 20 m. 

Acquisition time: 21 July 2006 at 10:34:42. Path: 060. Row: 258. Orthorectified and 

radiometrically calibrated into TOARF values. (b): ATCOR™-SPECL map, 19 spectral 

categories. Map legend: refer to Table 2. Courtesy of Daniel Schläpfer, ReSe Applications 

Schläpfer. (c): SPOT-like SIAM™ (S-SIAM™) pre-classification map at intermediate 

semantic granularity, 40 spectral categories. Map legend: generated from Table 3.  

(d): S-SIAM™ pre-classification map at fine semantic granularity, 68 spectral categories. 

Map legend: refer to Table 3. 

(a) (b) 

(c) (d) 

(3). One airborne 0.25 m-resolution 4-band (visible blue (B), G, R, NIR) Leica Airborne 

Digital Scanner (ADS)-80 image, acquired over an unknown location in the French 
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Alps on 1 September 2007. The raw MS image is radiometrically calibrated into 

surface reflectance (SURF) values, see Figure 3a (courtesy of Daniel Schläpfer, ReSe 

Applications Schläpfer). Notably, SURF ⊆ TOARF, i.e., SURF values are a special 

case of TOARF values, where SURF ≈ TOARF in very clear sky conditions and flat 

terrain conditions [12,32,33] (refer to the Part 1, Section 4.2.1 [20]). In this test case, 

visible features include dense tree cover in the southern portion and house 

development in the northern portion of the image. This test image is input to the 

ATCOR™-SPECL single-granule pre-classifier (see Figure 3b; courtesy of Daniel 

Schläpfer, ReSe Applications Schläpfer) and to the QuickBird-like SIAM™  

(Q-SIAM™) three-granule pre-classification and three-scale segmentation software 

product (refer to the Part 1, Tables 3 and 4 [20]), see Figure 3c,d. The Q-SIAM™  

fine-granularity map legend is shown in Table 4. 

Table 4. Preliminary classification map’s legend, adopted by the QuickBird-like SIAM™ 

(Q-SIAM™) at fine semantic granularity, consisting of 52 spectral categories (refer to the 

Part 1, Table 4 [20]). Pseudo-colors of the spectral categories are grouped on the basis of 

their spectral end member (e.g., “bare soil or built-up”) or parent spectral category (e.g., 

“high” leaf area index (LAI) vegetation types). The pseudo-color of a spectral category is 

chosen so as to mimic natural colors of pixels belonging to that spectral category. This 

legend gives a clue about the symbolic parent-child relationships supported by Q-SIAM™ 

at different semantic granularity levels (refer to the Part 1, Figure 4 [20]). For example, a 

line-specific OR-combination of the 52 “child” spectral categories detected at the fine 

semantic granularity level across the nine lines of Table 4 would provide nine “parent” 

spectral categories at a coarser level of semantic granularity. Since it deals with symbolic 

reasoning, then this semantic aggregation is inherently subjective (equivocal) in nature, 

refer to the Part 1, Section 2.1 [20].  

Spectral Category Pseudo-Color 

“High” leaf area index (LAI) vegetation types (LAI values decreasing left to right)  

“Medium” LAI vegetation types (LAI values decreasing left to right)  

Shrub or herbaceous rangeland  

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland)  

Bare soil or built-up  

Deep water, shallow water, turbid water or shadow  

Smoke plume over water, over vegatation or over bare soil  

Snow and shadows snow  

Unknowns  

To recapitulate, to test the robustness of alternative MS image mapping systems to changes in the 

input data set, two test images are selected from different imaging sensors, but their spatial resolution, 

spectral resolution and acquisition conditions, excluding the depicted area size, are similar one another, 

while the third test image features a radiometric unit of measure, spatial resolution, spectral resolution 

and acquisition conditions totally different from the first two test images. 
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Figure 3. (a): False-color (R = Red band, G = NIR band, B = Blue band) Leica ADS-80 

image. Spatial resolution: 0.25 m. Acquired on 2007-09-01, covering a surface area over 

France (6°37′E, 46°06′N), radiometrically calibrated into SURF values, Courtesy of Daniel 

Schläpfer, ReSe Applications Schläpfer. (b): ATCOR™-SPECL map, 19 spectral 

categories. Map legend: refer to Table 2. Courtesy of Daniel Schläpfer, ReSe Applications 

Schläpfer. (c): QuickBird-like SIAM™ (Q-SIAM™) 4-adjacency contour map, depicting 

image-object contours, automatically generated from the Q-SIAM™ pre-classification map 

at fine semantic granularity, shown at bottom-right. (d): Q-SIAM™ pre-classification map 

at fine semantic granularity, 52 spectral categories. Map legend: refer to Table 4.  

(a) (b) 

(c) (d)

Notably, in the following experimental session only segmentation maps of the VHR Leica image 

generated by the SIAM™ software product are considered for SQI estimation, since spatial resolutions 

of the IRS and SPOT test images are too coarse to consider shape properties of image-objects as salient 



Remote Sens. 2013, 5 5220 

 

for the recognition of man-made land cover (LC) classes, like “building” and “road”. Since it delivers 

as output no segmentation map, the ATCOR™-SPECL commercial software secondary product is not 

investigated by SQIs. 

3. Probability Sampling Protocol for Thematic Map Accuracy Assessment  

An information map, where information is either continuous or categorical (thematic), provides a 

reduced representation of a target geospatial population. Map accuracy assessment is an established 

component of the process of creating and distributing information maps [24]. The fundamental basis of 

a map accuracy assessment protocol is a location-specific comparison, across a geographic region of 

interest (GEOROI), between the test map or predicted map to be evaluated [34] and corresponding 

ground condition(s) or “reference” condition(s) collected from a target (“true”) geospatial population, 

to be univocally identified on the ground [35], which may be represented as a complete-coverage 

reference map (also called truth map [34]), if any exists. 

Before being used in scientific investigations and policy decisions, thematic or continuous maps 

generated from RS images should be: (1) validated by means of probability sampling criteria,  

which guarantee statistical consistency (validity) of sample variables [24,25] (refer to the Part 1, 

Section 2.6 [20]) and (2) provided with a documented and fully traceable set of mutually uncorrelated, 

quantifiable, metrological/statistically-based QIs, featuring a degree of uncertainty in measurement to 

be considered statistically significant [2] (refer to the Part 1, Section 3 [20]).  

Largely overlooked by the RS community, the two basic requirements of statistical validity and 

statistical significance of metrological/statistically-based QIs extracted from RS-IUS’s output products 

are almost never satisfied in the RS common practice. This means that, to date, operational qualities, 

including mapping accuracy, of existing RS-IUSs remain largely unknown in statistical terms, in 

contrast with the principles of statistics and the QA4EO guidelines (refer to the Part 1, Section 2.5 [20]). 

In this section, a six-step probability sampling protocol for accuracy assessment of thematic maps 

generated from spaceborne/airborne EO images is selected from a related work [32]. The selected 

probability sampling protocol is sketched as follows [32].  

(i) Identification of the GEOROI, test map taxonomy, reference sample set taxonomy and 

“correct” entries in the contingency table (error matrix). A contingency table is the 

Cartesian product between two discrete and finite sorted sets of concepts, the test and the 

reference vocabulary, which may not coincide. Before the contingency table is instantiated 

with probability values, “correct” entries of the contingency table must be selected by a 

“knowledge engineer” (domain expert) [28]. Identified as CVPSI ∈ [0, 1] (refer to  

Section 1), a metrological QI of the semantic harmonization between the test and reference 

map taxonomies is estimated from the distribution of “correct” entries in the contingency table. 

(ii) Probability sampling design, where the following decisions must be taken.  

• Estimation of the sample set cardinality depending on the project’s requirements 

specification in terms of: (i) target overall accuracy and confidence interval, (ii) target  

per-class accuracy and confidence interval and (iii) costs of sampling in compliance with 

the project budget. 
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• Selection of the sampling frame. A sampling frame provides a complete partition of a 

GEOROI into sampling units and allows access to the elements of the target population 

spread across the GEOROI [35]. There are two types of sampling frames: (one-dimensional) 

list frames and (two-dimensional) area frames [24]. 

• Selection of the spatial type(s) of sampling units, e.g., pixel, polygon or block of 

pixels [35]. For example, these three spatial types of sampling units are appropriate for 

TQI assessment, but the polygon sampling unit type is necessary for SQI assessment (refer 

to Section 1). 

• Selection of the sampling strategy, e.g., simple random sampling, systematic sampling, 

stratified random sampling, etc. 

(iii) Evaluation protocol. This procedure collects information pertaining to the thematic 

determination of both reference and test sampling units. Typically, information pertaining to 

the thematic determination of the reference sampling units is collected by means of field 

campaigns, photointerpretation of EO images “one step closer to the ground” than the RS 

data used to make up the test map [36], i.e., EO images whose spatial and/or spectral quality 

is higher than that of the RS images employed for the generation of the test map, or a 

combination of these two information sources. 

(iv) Labeling protocol, consisting of rules to assign one or more class indexes to each reference 

sampling unit and each test sampling unit, based on the information collected in the 

evaluation protocol. 

(v) Analysis protocol, where a contingency table, whose “correct” entries are selected in step (i), 

is instantiated with occurrence or probability values. 

(vi) Estimation protocol, where an optimized set of mutually independent summary statistics, 

e.g., TQIs and SQIs (see Section 1), provided with their confidence interval, are estimated 

from the contingency table(s) and assessed in comparison with reference standards [2]. 

In the rest of this section, the aforementioned probability sampling procedure is instantiated for 

accuracy assessment of twelve pre-classification maps (refer to Section 1), generated from the three 

test images, described in Section 2, by the SIAM™ three-granule software product (refer to the Part 1, 

Tables 3 and 4 [20]) and the ATCOR™-SPECL single-granule software secondary product (refer to 

the Part 1, Table 2 [20]).  

3.1. Identification of the GEOROI, Reference Class Taxonomy, Test Map Taxonomy and “Correct” 

Entries in the Contingency Table 

According to Stehman, the two most common categories of thematic map pair comparison (out of 

four possible types) are when [37]: 

1. Two thematic maps of the same GEOROI and featuring the same thematic map’s legend  

are compared. 

2. Two thematic maps of the same GEOROI, but featuring two different thematic map’s legends 

are compared. This second type of thematic map comparison includes the first type as a  

special case. 
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While the first type of map pair comparisons is by far the most common in the RS literature, in 

many practical cases the second type of map pair comparisons occurs, where there is a need to 

reconcile (harmonize, match) different LC class vocabularies before comparing different thematic 

maps. The semantic harmonization of different legends of thematic maps [38–43] is equivalent to 

solving semantic heterogeneity in a hierarchical organization of ontologies, to guarantee their semantic 

interoperability, like in ontology-driven geographic information systems [41,42]. In practice, the 

development of ontologies (e.g., spatio-temporal ontologies of the 4-D world-through-time, refer to the 

Part 1, Section 2.3 [20]) can facilitate the capture of domain knowledge in such a way as to detect or 

prevent errors when semantic data sources must be integrated. In the words of Cerba et al. [44], 

“harmonisation of classifications schemes and systems, codelists, terminology and vocabulary (i.e., 

selection of corresponding items, definition of rules for mapping languages) must be created before the 

building of (data) harmonisation tools”. As noted by Ahlqvist, “many scholars have acknowledged a 

need to negotiate and compare information from different origins, such as data that use different 

classification systems... Once a classification scheme has been transformed into a formalized 

categorization, a translation can be achieved by matching the concepts in one system with concepts in 

another, either directly or through an intermediate classification” [38]. In the words of philosophical 

hermeneutics [26,27], the notion of “information-as-(an interpretation)process” (refer to the Part 1, 

Section 2.1 [20]), which always takes place in the communication between a speaker and an inquirer 

(receiver), where the receiver always plays a pro-active role in the generation of information as 

interpreted data, implies that any “fusion (harmonization, reconciliation) of ontologies”, occurring 

between the sender and the receiver, is inherently equivocal (subjective), to be community-agreed 

upon (refer to the Part 1, Section 2.1 [20]). 

In the present Part 2, an inherently equivocal reconciliation of a pair of thematic map taxonomies 

must be accomplished for validation of a pre-classification map, generated by the ATCOR™-SPECL 

or the SIAM™ software product, against a reference (“ground truth”) sample set of LC classes. It is 

important to stress that, as pointed out in the Part 1, Section 4.1 [20], a symbolic (categorical)  

pre-classification map of an input RS image, generated as output by a pre-attentive vision first stage in 

agreement with the Marr theory of vision [5], must not be confused with a traditional LC map, 

delivered as output by an attentive vision second stage. On one hand, an LC map’s legend consists of a 

discrete and finite set of LC classes (concepts), where each concept is a class of real-world (4-D) 

objects in the 4-D world-through-time, e.g., “deciduous forest”, “grassland”, “building”, 

“road”, etc. [18,19,29,44,45]. To have significance to a human observer in the 4-D world-through-

time, each LC class name carries a 4-D spatio-temporal information that tends to dominate spectral 

(color) information [46], which explains why achromatic vision remains effective despite the loss of 

color information [20]. On the other hand, the vocabulary of a pre-classification map consists of a 

discrete and finite set of spectral-based semi-concepts, also called spectral categories, where each  

spectral-based semi-concept is a set of one or more LC classes whose spectral (color) properties can 

overlap, e.g., “vegetation”, “bare soil or built-up”, “water or shadow”, etc., irrespective of spatio-

temporal properties of LC classes. In the words of Adams et al. on popular spectral mixture analysis, 

LC “classes that mimic one another are grouped and labeled by numbered category” [46]. As a 

consequence, the semantic information conveyed by a color-driven pre-classification map’s legend is 

always equal or inferior (coarser), i.e., never superior (finer), to that of an LC map. It means that one 
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spectral-based semi-concept can be associated with one or more (many) LC classes, e.g., spectral 

category “strong vegetation” can be linked to LC classes “grassland” or “crop”, just like “endmember 

fractions cannot always be inverted to unique class names” ([46], p. 147). Analogously, one LC class 

can encompass different color quantization levels, e.g., the LC class “deciduous forest” can be 

depicted with several tones of color green, equivalent to spectral categories “average vegetation”, 

“dark vegetation”, etc.  

To recapitulate, a one-to-many labeling relationship, typical of LC class mixing, is widely known. 

Unfortunately, in the RS common practice, spectral categories, although conceptually similar to LC 

class mixtures, are often confused with LC classes. Hence, it is important to conclude that, in general, 

vocabularies (ontologies) of pre-classification maps and LC maps generated from the same RS image 

do not coincide and must be harmonized (reconciled) for assessment and comparison purposes [32]. 

3.1.1. Selection of “Correct” Entries in a Contingency Table 

In our experimental session, geographic coordinates of each test image define a GEOROI, while 

legends of the ATCOR™-SPECL (refer to Table 2) and SIAM™ pre-classification maps (refer to 

Tables 3 and 4) are adopted as the test vocabulary. Next, a reference LC class taxonomy, specific for 

each test image, is selected by an expert photointerpreter. A test image-specific reference LC class 

taxonomy must be mutually exclusive and totally exhaustive, in compliance with the Congalton and 

Green requirements of a classification scheme [36]. To satisfy the mutual exclusivity requirement of a 

classification scheme, LC classes which may spectrally overlap are defined on the basis of spectral 

rules that are mutually exclusive, to prevent one pixel from belonging to more than one LC class. For 

example, in Tables 5 and 6, the two LC classes identified as “Vegetation with very low to medium NIR 

response” (featuring acronym VL-M NIR) and “Vegetation with high to very high NIR response” 

(featuring acronym H-VH NIR) provide a partition of the vegetation mask (parent-class) into two 

totally exhaustive and mutually exclusively child-nodes, where the TOARF value ∈ [0, 1] in the NIR 

band is, respectively, ≤ than or > than a crisp TOARF threshold, say, 0.4. Reference LC class 

definitions and acronyms selected for each test image are listed in Tables 5–7.  

In general, test and reference taxonomies are discrete and finite sorted sets of concepts that may 

differ in semantics, order of presentation and/or cardinality (set size) [35,38,47–49]. An either square 

or non-square contingency table, otherwise called overlapping area matrix (OAMTRX), bi-dimensional 

association matrix [37], cross-tabulation matrix [34] or full semantic change matrix [47], is the 

Cartesian product (product set) of a given pair of test and reference taxonomies, which may or may not 

coincide. If and only if the two test and reference taxonomies are the same sorted set of concepts, then 

an OAMTRX becomes a popular (square and sorted) confusion matrix (CMTRX) [36,50,51]. Hence, 

relation OAMTRX ⊇ CMTRX always holds, i.e., the latter is a special case of the former.  
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Table 5. Reference class definitions and acronyms for the IRS-P6 LISS-3 test image,  

23.5 m resolution, see Figure 1a. 

Reference Class 

Acronym 

Spatial 

Type 
Definition 

Cl/Sh Pixel Clouds or cloud shadows or strong shadows over bare soil or strong shadows over vegetation 

BBS Pixel Built-up or Bare Soil 

Range/MP Pixel Rangeland or mixed vegetation/soil pixels 

VL-M NIR Pixel Vegetation with very low to medium NIR response (TOARF values in range {0, 255} < 80) 

H-VH NIR Pixel Vegetation with high to very high NIR response (TOARF values in range {0, 255} ≥ 80) 

Water Pixel All bodies of water, including oceans, lagoons, rivers, lakes, etc. 

Table 6. Reference class definitions and acronyms for the SPOT-4 HRVIR test image, 

20 m resolution, see Figure 2a. 

Reference 

Class Acronym 

Spatial 

Type 
Definition 

BBS Pixel Built-up or Bare Soil 

Range/MP Pixel Rangeland or mixed vegetation/soil pixels 

VL-M NIR Pixel Vegetation with very low to medium NIR response (TOARF values in range {0, 255} < 80) 

H-VH NIR Pixel Vegetation with high to very high NIR response (TOARF values in range {0, 255} ≥ 80) 

Water Pixel All bodies of water, including oceans, lagoons, rivers, lakes, etc. 

Table 7. Reference class definitions and acronyms for the Leica ADS-80 test image,  

0.25 m resolution, see Figure 3a. 

Reference Class 

Acronym 
Spatial Type Definition 

LtBBrS 
Polygon if building, 

otherwise pixel 

Light-tone Built-up or Bright Bare Soil distinguished by high response  

in visible wavelength 

DkBDkS 
Polygon if building, 

otherwise pixel 

Dark-tone Built-up or Dark Bare Soil distinguished by low  

response in visible wavelength 

NDVI1 Pixel Grassland with high NDVI (≥0.7) 

NDVI2 Pixel Grassland with lower NDVI (<0.7) 

TrCr Pixel Tree Crowns 

SH Pixel Shadow over vegetation, built-up, or soil land covers 

Outlier Pixel Unidentifiable objects 

In this paper, twelve OAMTRX instances are generated as Cartesian products between the three test 

image-specific reference LC class taxonomies, refer to Tables 5–7, with the three legends collected 

from the SIAM™ three-granule pre-classifier (refer to Tables 3 and 4) plus one legend of the 

ATCOR™-SPECL single-granule pre-classifier (refer to Table 2). Six of these twelve OAMTRX 

instances are shown in Tables 8–13 where, for the sake of simplicity, depicted table rows are only 

those whose test class occurrence is greater than 0.15% in the test map.  

Finally, in the so-called definition phase of an OAMTRX instance, a “knowledge engineer” [28] 

identifies “correct” entries as reference-test class relations capable of harmonizing (matching) the two 

given test and reference taxonomies. This “harmonization of ontologies” or categorical variable pair 

matching is a cognitive (interpretation) process. As such, it is inherently equivocal (subjective, refer to 
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the Part 1, Section 2.1 [20]). This means that, in general, categorical variable pair matching requires 

negotiation and to be community-agreed upon [38,39,42–44,46]. Notably, the categorical variable pair 

matching phase is independent of the OAMTRX instantiation with probability values. In common 

practice, the former predates the latter (also refer to the introduction to Section 3). 

Table 8. ATCOR™-SPECL pre-classification of the IRS test image. Overlapping area 

matrix (OAMTRX) instance between test classes (refer to Table 2) and reference classes 

(refer to Table 5), represented as table rows and columns respectively. For the sake of 

simplicity, only test classes (table rows) whose occurrence is greater than 0.15% in the test 

map being investigated are shown. “Correct” entries selected by the present authors for 

inter-vocabulary reconciliation are shown as yellow checkmarks.  

Spectral Category Cl/Sh BBS Range/MP VL-M NIR H-VH NIR Water 

Bare Soil X � X X X X 

Average Vegetation X X � � � X 

Bright Vegetation X X � � � X 

Dark Vegetation X X � � � X 

Yellow Vegetation X X � � � X 

Mix of Vegetation/Soil X � � � � X 

Asphalt/Dark Sand X � X X X X 

Sand/Bare Soil/Cloud � � X X X X 

Bright Sand/Soil/Cloud � � X X X X 

Dry Vegetation/Soil X � � X X X 

Sparse Vegetation/Soil X � � X X X 

Turbid Water � X X X X � 

Clear Water Over Sand X X X X X � 

Not Classified X X X X X X 

Table 9. Coarse-granularity S-SIAM™ pre-classification of the IRS test image. OAMTRX 

instance between test classes (related to those shown in Table 3) and reference classes 

(refer to Table 5), represented as table rows and columns respectively. For the sake of 

simplicity, only test classes (table rows) whose occurrence is greater than 0.15% in the test 

map being investigated are shown. “Correct” entries selected by the present authors for 

inter-vocabulary reconciliation are shown as yellow checkmarks. 

Spectral Category Cl/Sh BBS Range/MP VL-M NIR H-VH NIR Water 

Unclassified X X X X X X 

V X X � � � X 

R X X � � � X 

WR X � � X X X 

BB X � X X X X 

WASH � X X X X � 

CL � X X X X X 

TNCL_SHRBR_HRBCR_BB � � � X X X 

UN X X X X X X 
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Table 10. ATCOR™-SPECL pre-classification of the SPOT test image. OAMTRX 

instance between test classes (refer to Table 2) and reference classes (refer to Table 6), 

represented as table rows and columns respectively. For the sake of simplicity, only test 

classes (table rows) whose occurrence is greater than 0.15% in the test map being 

investigated are shown. “Correct” entries selected by the present authors for  

inter-vocabulary reconciliation are shown as yellow checkmarks. 

Spectral Category BBS Range/MP VL-M NIR H-VH NIR Water 

Average Vegetation X � � � X 
Bright Vegetation X � � � X 
Dark Vegetation X � � � X 
Yellow Vegetation X � � � X 
Mix of Vegetation/Soil � � � � X 
Asphalt/Dark Sand � X X X X 
Sand/Bare Soil/Cloud � X X X X 
Dry Vegetation/Soil � � X X X 
Sparse Vegetation/Soil � � X X X 
Turbid Water X X X X � 
Clear Water Over Sand X X X X � 
Not Classified X X X X X 

Table 11. Intermediate-granularity S-SIAM™ pre-classification of the SPOT test image. 

OAMTRX instance between test classes (related to those shown in Table 3) and reference 

classes (refer to Table 6), represented as table rows and columns respectively. For the sake 

of simplicity, only test classes (table rows) whose occurrence is greater than 0.15% in the 

test map being investigated are shown. “Correct” entries selected by the present authors for 

inter-vocabulary reconciliation are shown as yellow checkmarks.  

Spectral Category BBS Range/MP VL-M NIR H-VH NIR Water 

Unclassified X X X X X 

SV X X � � X 

AV X � � � X 

ASHRBR X � � � X 

WEDR � � X X X 

PB X � � X X 

BBB_VBBB � X X X X 

SBB � X X X X 

ABB � X X X X 

DPWASH X X X X � 

SLWASH X X X X � 

TWASH X X X X � 

SASLWA X X X X � 

TNCLV_SHRBR_HRBCR � � � X X 

TNCLWA_BB � X X X � 

UN3 X X X X X 
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Table 12. ATCOR™-SPECL pre-classification of the Leica test image. OAMTRX 

instance between test classes (refer to Table 2) and reference classes (refer to Table 7), 

represented as table rows and columns respectively. For the sake of simplicity, only test 

classes (table rows) whose occurrence is greater than 0.15% in the test map being 

investigated are shown. “Correct” entries selected by the present authors for inter-vocabulary 

reconciliation are shown as yellow checkmarks.  

Spectral Category LtBBrs DkBDkS NDVI1 NDVI2 TrCr SH Outlier 

Average Vegetation X X � � � X X 

Bright Vegetation X X � � � X X 

Dark Vegetation X X � � � � X 

Yellow Vegetation X X � � X X X 

Mix of Vegetation/Soil � � � � X X X 

Asphalt/Dark Sand � � X X X X X 

Sand/Bare Soil/Cloud � � X X X X X 

Bright Sand/Soil/Cloud � � X X X X X 

Dry Vegetation/Soil � � X � X X X 

Sparse Vegetation/Soil � � X � X X X 

Turbid Water X X X X X � X 

Not Classified X X X X X X � 

Examples of “correct” entries, selected by the present authors according to their own personal 

expertise, are shown as yellow checkmarks in Tables 8–13 for six out of twelve OAMTRX instances 

generated in this experimental session. In an OAMTRX instance, “correct” entries can be diagonal or 

off-diagonal cells. Their distribution identifies many-to-many inter-vocabulary relations, whose special 

cases are one-to-many, many-to-one and one-to-one relations [32]. This means that comprehensive 

interpretation of an OAMTRX can be very challenging, complex and time consuming [37,41–47], 

which is not the case for a traditional (square and sorted) CMTRX, whose interpretation is simple and 

intuitive because it is guided by the main diagonal [36,50,51].  

For the sake of completeness, the twelve full-size OAMTRX instances defined and instantiated in 

this experimental session can be accessed through anonymous ftp [52]. 

In terms of knowledge/information representation, relation OAMTRX ⊇ CMTRX means that 

correct one-to-one semantic associations identified in a CMTRX are inherently unambiguous, while no 

such level of unequivocal information is guaranteed to exist in an OAMTRX instance, where  

many-to-many test-reference class relations are allowed. This is tantamount to saying that the mapping 

information conveyed by a (square or non-square) OAMTRX is equal or inferior (i.e., never superior) 

to that of a (square and sorted, unambiguous) CMTRX [32]. On the other hand, although more 

ambiguous (fuzzier) than one-to-one relations, many-to-many mapping functions do convey some 

degree of mapping information, superior to the null information carried by all-to-all relations. In 

recognition of the amount of useful inter-vocabulary information, whose range of change goes from 

totally uninformative all-to-all relations up to unequivocal one-to-one relations, the CVPSI measure is 

proposed to quantify the level of information carried by the distribution of “correct” entries in an 

OAMTRX instance [32]. For more details about alternative CVPSI formulations, refer to the next 

Section 3.1.2. 
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Table 13. Fine-granularity Q-SIAM™ pre-classification of the Leica test image. 

OAMTRX instance between test classes (refer to Table 4) and reference classes (refer to 

Table 7), represented as table rows and columns respectively. For the sake of simplicity, 

only test classes (table rows) whose occurrence is greater than 0.15% in the test map being 

investigated are shown. “Correct” entries selected by the present authors for inter-vocabulary 

reconciliation are shown as yellow checkmarks. 

Spectral Category LtBBrS DkBDkS NDVI1 NDVI2 TrCr SH Outlier 

Unclassified X X X X X X X 

SVVH2NIR X X � � � X X 

SVVH1NIR X X � � � X X 

SVVHNIR X X � � � X X 

SVHNIR X X � � � � X 

SVMNIR X X � � � � X 

SVLNIR X X X � � � X 

SVVLNIR X X X � � � X 

AVVH1NIR X X X � � � X 

AVVHNIR X X X � � � X 

ASHRBRHNIR � � � � � X X 

ASHRBRMNIR � � � � � X X 

ASHRBRLNIR � � � � � X X 

ASHRBRVLNIR � � � � � X X 

BBB_TNCL � � X X X X X 

SBBNF � � X X X X X 

ABBVF � � X X X X X 

ABBNF � � X X X X X 

DBBVF � � X X X � X 

DBBF � � X X X � X 

DBBNF � � X X X � X 

TWASH X � X X X � X 

SN_CL_BBB � X X X X X X 

UN3 X X X X X X � 

3.1.2. Alternative CVPSI Formulations 

Independent of thematic map accuracy, a normalized degree of match between a pair of test and 

reference categorical variables, which may not coincide, is estimated from an OAMTRX instance and 

called CVPSI ∈ [0, 1] [32]. In the Appendix, a novel CVPSI formulation, identified as CVPSI2, is 

proposed as a relaxed version of the original CVPSI1 expression presented in [32], i.e., relation 

CVPSI2 ≥ CVPSI1 always holds. Designed to be maximized by different distributions of “correct” 

entries in an OAMTRX instance, the CVPSI1 and CVPSI2 expressions have different application 

domains. A CVPSI1 estimate increases if inter-vocabulary mapping functions are one-to-one, like in 

the comparison of two different LC maps whose legends are the same set of concepts, but their orders 

of presentation are different. A CVPSI2 estimate increases if test-to-reference class relationships are 

one-to-one (e.g., one color name matches with exactly one target LC class) while reference-to-test 

class relationships can be either one-to-one or one-to-many (e.g., one reference LC class matches with 
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at least one or more color names). Notably, between the two CVPSI1 and CVPSI2 formulations, the 

latter is the one suitable for best modeling the mapping problem at hand, from reference LC classes to 

test spectral categories and vice versa, refer to the Appendix. 

Hereafter, the acronym CVPSI is used to mean the ensemble of CVPSI1 and CVPSI2 values. 

Notably, variable (1 − CVPSI) ∈ [0, 1], complementary to CVPSI, can be interpreted as a 

normalized estimate of the mapping (classification) effort required to fill up the residual semantic gap 

from the test to the reference pair of semantic vocabularies. For example, if CVPSI = 0.4 at the  

pre-attentive vision first stage of a two-stage RS-IUS, then (1 − CVPSI) = 0.6 is the residual semantic 

gap from test to reference vocabularies to be filled up by the attentive vision second stage, refer to the 

Part 1, Figure 1c [20]. 

Let us identify the total number of “correct” entries in an OAMTRX instance as CE, such that  

CE ≤ TC × RC, where TC identifies the cardinality of the test classification taxonomy and RC 

represents the cardinality of the reference classification taxonomy. As an example, a CVPSI1 value is 

computed from the OAMTRX instance shown in Table 8 according to Equation (A3) to  

Equation (A5) in the Appendix. In this case, RC = 6 and TC = 14.  

• Suppose that all elements of the OAMTRX instance of size TC × RC = 14 × 6 = 64 are “correct” 

entries, such that CE = 64, equivalent to a dumb (non-informative) mapping case. In accordance 

with condition (A1.c) in the Appendix, it is expected that CVPSI → 0. Based on Equation (A3) 

to Equation (A5) in the Appendix: 

( )1 11 6 (14) 14 (6) 6 0.00043 14 0.00193 0.00148 0
6 14 20
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This result proves that Equation (A3) to Equation (A5) satisfy constraint (A1.c) when all  

inter-vocabulary semantic relationships are allowed. 

• Suppose CE is defined as the total number of elements identified by yellow checkmarks in  

Table 8, then CE = 29 ≤ TC × RC = 14 × 6 = 64. In accordance with condition (A1.e) in the 

Appendix, it is expected that CVPSI1 ∈ (0, 1]. Based on Equation (A3) to Equation (A5) in 

the Appendix:  
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This result proves that Equation (A3) to Equation (A5) satisfy constraint (A1.e) for the OAMTRX 

shown in Table 8. The estimated CVPSI1 value of 0.58 means that 58% of the information gap from 

sensory data to LC classes is filled up at the pre-attentive vision first stage, while 42% of this gap 

remains to be filled, from intermediate semi-concepts to final concepts, by an attentive vision  

second stage. 
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In general, for a given reference vocabulary (say, a reference set of apple types: “apple_1”, 

“apple_2”, etc.), it is unreasonable to expect the CVPSI value to monotonically increase with the 

cardinality of the test set of concepts (say, a test set of orange types: “orange_1”, “orange_2”, etc.), 

irrespective of the semantic matching between the two vocabularies. For example, the CVPSI value 

between reference apples and test oranges is zero irrespective of the cardinality of the test set of 

oranges. In particular cases, when the two test and reference vocabularies are semantically “consistent” 

(say, a reference set of apple types: “apple_1”, “apple_2”, etc., and a single test class called “fruits”), a 

finer semantic granularity of the test vocabulary or reference vocabulary or both causes the  

CVPSI to increase or remain the same (never decrease), meaning that the inter-vocabulary mapping 

becomes less ambiguous, like a quantization error is monotonically non-increasing with the number of 

quantization levels.  

Let us examine if, in these experiments, the CVPSI variable increases with the number of spectral 

categories detected by the deductive pre-classification first stage at hand. Table 14 reports the CVPSI1 

and CVPSI2 estimates collected from the twelve OAMTRX instances (including those sketched in 

Table 8 to Table 13) generated by the cross-tabulation of the SIAM™’s three-granule legend plus the 

ATCOR™-SPECL’s single-granule legend with the three test image-specific reference LC class sets 

reported in Tables 5–7. Table 14 reveals the following. 

• Across image-specific reference vocabularies, the CVPSI values estimated from the SIAM™ 

three-granule legend increase monotonically with the cardinality of the test set of spectral 

categories. This evidence proves that the “subjective” work performed by the knowledge 

engineer, who selected the “correct” entries in the OAMTRX instances, can be considered 

consistent overall, because it does not hinder an existing correlation among sets of SIAM™’s 

maps featuring a parent-child relationship (refer to the Part 1, Figure 4 [20]). 

• With only one exception in 12 experiments involving both the ATCOR™-SPECL and 

SIAM™ pre-classifiers, estimated CVPSI values increase with the cardinality of the test set of 

spectral categories. It means that, in these experiments, the ATCOR™-SPECL semantic 

vocabulary is correlated with the fine, intermediate and coarse hierarchical levels of the 

SIAM™ taxonomy (refer to the Part 1, Table 4 [20]). In practice, the ATCOR™-SPECL’s set 

of spectral categories (refer to Table 2) can be considered as yet-another aggregation of the 

SIAM™’s set of primitive concepts at fine semantic granularity.  

• For all test images, the CVPSI values of the S-SIAM™ and Q-SIAM™ maps at intermediate 

and fine semantic granularities (refer to Table 4 in Part 1 [20]) are superior to those of the 

ATCOR™-SPECL, whose semantic granularity (equal to 19, see Table 2) is coarser. 

• For the S-SIAM™ and Q-SIAM™ maps at coarse semantic granularity, the CVPSI values are 

inferior to those of the ATCOR™-SPECL in two out of three cases, where the semantic 

cardinality of the latter (equal to 19, see Table 2) is greater than those of the former (equal to 

15 and 12 respectively, refer to Table 4 in Part 1 [20]).  

• Overall, across all test images, both the ATCOR™-SPECL and SIAM™ pre-classifiers 

accomplish a CVPSI value higher than 50%, which means they both fill at least 50% of the 

information gap from sensory data to LC classes (refer to the Part 1, Figure 1c [20]), right at 
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the pre-attentive vision first stage, without user interactions and in near real-time, which 

means at no cost in manpower and computer power.  

To recapitulate, in these experiments, where the semantic degree of match between spectral 

categories and target LC classes is estimated as a scalar value, CVPSI ∈ [0, 1], independent of the 

mapping accuracy indexes, TQIs and SQIs (refer to the farther Section 3.4.1), conclusions are  

the following. 

1. The SIAM™ multi-granule pre-classifier appears more effective than the ATCOR™-SPECL 

single-granule pre-classifier in filling up the information gap from sensory data to LC classes 

(refer to the Part 1, Section 2.3 and Figure 1c [20]).  

2. Approximately 50% of the information gap from sensory data to LC classes is filled by the 

SIAM™ pre-classification first stage and accomplished without user’s supervision and in near 

real-time. To be considered of potential interest, in addition to being informative because its 

CVPSI value scores high, the SIAM™ pre-classification first stage must also be accurate, i.e., 

its TQIs and SQIs must score high simultaneously with the CVPSI.  

Table 14. CVPSI2 ≥ CVPSI1 ∈ [0, 1] values collected from the proposed 12 thematic 

maps, refer to Equation (A3) to (A10) in the Appendix.  

Test Data Set ATCOR™ 
SPECL 

(19 sp. 
cat.) 

CVPSI1 

ATCOR™ 
SPECL 

(19 sp. 
cat.) 

CVPSI2 

S-SIAM™ 

(Coarse = 
15 sp. cat.) 

CVPSI1 

S-SIAM™ 

(Coarse = 
15 sp. cat.) 

CVPSI2 

S-SIAM™ 

(Interm. = 
40 sp. cat.) 

CVPSI1 

S-SIAM™ 

(Interm. = 
40 sp. cat.) 

CVPSI2 

S-SIAM™ 

(Fine = 68 
sp. cat.) 
CVPSI1 

S-SIAM™ 

(Fine = 68 
sp. cat.) 
CVPSI2 

IRS-P6 LISS-
3, 23.5 m-
resolution,  
4-band (G, R, 
NIR, MIR) 

0.6631 0.7696 0.4855 0.6480 0.7110 0.7755 0.7653 0.8034 

SPOT-4 
HRVIR, 20 
m-resolution,  
4-band (G, R,  
NIR, MIR) 

0. 5732 0.6688 0.4746 0.6135 0.6659 0.7208 0.7449 0.7796 

 ATCOR™ 
SPECL 

(19 sp. 
cat.) 

CVPSI1 

ATCOR™ 
SPECL 

(19 sp. 
cat.) 

CVPSI2 

Q-SIAM™ 

(Coarse = 
12 

sp. cat.)  
CVPSI1

Q-SIAM™ 

(Coarse = 
12 sp. cat.) 

CVPSI2 

Q-SIAM™ 

(Interm. = 
28 sp. cat.) 

CVPSI1 

Q-SIAM™ 

(Interm. = 
28 sp. cat.)  

CVPSI2 

Q-SIAM™ 

(Fine = 52 
sp. cat.)  
CVPSI1 

Q-SIAM™ 

(Fine = 52 
sp. cat.)  
CVPSI2 

Leica ADS-
40, 0.25 m-
resolution,  
4-band  
(B, G, R, 
NIR) 

0.5000 0.6073 0.4249 0.6337 0.5642 0.6664 0.6310 0.6911 

3.2. Probability Sampling Design 

It is impractical to obtain a census of a target geospatial population distributed across a GEOROI 

(refer to Section 3.1). In practice, a reference map that covers the entire GEOROI almost never exists. 

When a complete-coverage reference map does not exist, a reference sample set must be collected in 

compliance with a sampling protocol [24,25]. To provide sample estimates with the necessary 



Remote Sens. 2013, 5 5232 

 

probability foundation to permit generalization from the sample data set to the target geospatial 

population, probability sampling design and implementation become mandatory under constraints 

discussed in Part 1, Section 2.6 [20]. Probability sampling design consists of the following steps.  

(i) Estimation of the sample set cardinality depending on the project’s requirements specification.  

(ii) Selection of the sampling frame. (iii) Selection of the spatial type(s) of sampling units.  

(iv) Selection of the sampling strategy. These steps are developed below. 

3.2.1. Reference Sample Set Cardinality and Degree of Uncertainty in Measurement 

Statistical functions that link the sample overall accuracy of a thematic map with the sample degree 

of tolerance and the reference sample set size are selected from the existing literature. Next, a 

minimum reference sample cardinality is estimated as a function of the target overall accuracy and 

error tolerance listed in the project requirements specification. 

Statistical Level of Confidence and Level of Significance of a Sample overall Accuracy  

In order to estimate the minimum number of reference sampling units to be sampled and labeled for 

each reference class, Lunetta and Elvidge propose a statistical criterion which depends on the project 

requirements specification, namely, the target class-specific accuracy and error tolerance, but is 

independent of costs of sampling to be accounted for in the project budget [50]. This statistical 

criterion is described below. 

An overall accuracy (OA) measure is represented by a probability accuracy estimate (a random 

variable), ை , and its associated confidence interval (an error tolerance), ±ߜ . Furthermore, the  

half-width of the error tolerance, ߜ , exists at a specified confidence level ( 1−∝ ) such that  0 < ߜ < ை ≤ 1 with ∝	∈ [0,1]. The desired level of significance, represented by ∝, defines the risk 

that the actual error is larger than ±ߜ.  

Assuming that reference samples are independent and identically distributed (i.i.d.; notably, the 

i.i.d. property is almost always violated in the RS common practice, due to spatial autocorrelation 

within neighboring pixels of the same LC type), the half-width of the error tolerance, ߜ , can be 

computed based upon the desired accuracy estimate, confidence level, and sample set size (ܵܵܵ) 

according to [50]: 

ߜ = ඨχ(ଵ,ଵି∝)ଶ ∙ ைܲ ∙ (1 − ைܲ)ܵܵܵ  (3) 

where χ(ଵ,ଵି∝)ଶ
 
is the upper (1– α) × 100th percentile of the chi-square distribution with one degree of 

freedom, e.g., if the level of confidence is (1 − 0.01) = 0.99, then ݔ(ଵ,.ଽଽ)ୀ.ଷଶ . It follows that the 

necessary reference dataset size, ܵܵܵ, may be estimated as 

For the purpose of assessment of individual classes involved in the classification process, for each 

c-th class with c=1, … , C, where C is the total number of classes, it is possible to prove that [50] 

ܵܵܵ = χ(ଵ,ଵି∝)ଶ ∙ ைܲ ∙ (1 − ைܲ)ߜଶ  (4) 
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Similarly, the minimum number of samples to be taken for each class involved in the classification 

process is defined by Equation (6). 

When comparing accuracy estimates provided with a degree of tolerance, e.g., ைଵ  ± δ1 and  ைଶ ± δ2, the following considerations hold [37]. 

I. In the case where two confidence intervals do not overlap at all, it is possible to draw the 

conclusion that there is a statistically significant difference (at the confidence level (1−∝) or 

significance level ∝) between the two accuracy estimates.  

II. If two confidence intervals overlap such that the central point of one or other interval falls 

within the second interval, then there is no statistically significant difference (at the 

confidence level (1−∝) or significance level ∝) between the two estimates.  

III. In the third case, where the intervals overlap but the central point of neither interval lies 

within the second interval, “we cannot draw a conclusion about the significance of the relative 

algorithm performance and we must resort to different methods to formally determine the 

statistical significance of the differences between two algorithms, such as non-parametric 

tests independent of the underlying distribution, like the Sign test, suitable to determine the 

significance of the difference between a summary statistic of two different distributions,  

and the Kolmogorov-Smirnov test, used to investigate the statistical significance of the 

differences between the distributions themselves” [37]. 

Estimation of the Reference Sample Set Size Necessary to Satisfy the Project Requirements Specification 

In this work, the project requirements specification is as follows. 

• The target number of reference LC classes, RC, is image specific.  

o For the IRS test image, RC = 6, see Table 5. 

o For the SPOT test image, RC = 5, see Table 6. 

o For the Leica test image, RC = 6 + 1 (“Outlier”), see Table 7. 

• In accordance with the U.S. Geological Survey (USGS) standards, the target probability 

estimate, ை , and associated confidence interval, ± ߜ	 , is fixed at 0.85 ± 2% [13]. The 
significance level, ∝, is fixed at 0.05, thus χ(ଵ,ଵି∝)ଶ  = χ(ଵ,ଵି.ହ)ଶ  ≈ 3.84. 

• Per-class accuracy estimates, ை,	 , and associated confidence intervals, ± ߜ	 , should be 

consistent and greater than or equal to 0.70% ± 5% [13,53]. In this work, the reference  
per-class accuracy, ை,	 , is considered equal to 0.85% ± 5%. Additionally, the per-class 
significance level, ∝/ܥ, is fixed at 0.01, thus χ(ଵ,ଵି∝/)ଶ  = χ(ଵ,ଵି.ଵ)ଶ ≈ 6.63. 

Given these project requirements, sample set size estimates are calculated as follows. 

ߜ = ඨχ(ଵ,ଵି∝/େ)ଶ ∙ ைܲ, ∙ (1 − ைܲ,)ܵܵܵ , ܿ = 1, … ,  (5) ܥ

ܵܵܵ = χ(ଵ,ଵି∝/େ)ଶ ∙ ைܲ, ∙ (1 − ைܲ,)ߜଶ , ܿ = 1,… , (6) ܥ
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• According to Equation (4), the minimum sample set size, independent of the test image and 

sampling costs, necessary to assess the overall accuracy assuming USGS parameters is 

o Equation (4) = SSS = ( )
2

12
)1,1(

δ
αχ

OA
p

OA
p −⋅⋅−  ≈ 

ଷ.଼ସ∙.଼ହ∙(ଵି.଼ହ).ଶమ  ≈ 1,225 (7)

• According to Equation (6), the minimum sample set size (dependent upon the test image 

reference class set, RC) necessary to assess the per-class accuracy assuming the previously 

defined parameters is 

o Equation (6) = SSSc = 
2

,
1

,
2

)/1,1(

c

cOA
p

cOA
p

RC

δ

αχ 




 −⋅⋅− , c = 1, ...,  

RC ≈ 
.ଷ∙.଼ହ∙(ଵି.଼ହ).ହమ  ≈ 340 

(8)

o The number of samples per image is the product of the number of reference classes, 

RC, and the per-class sample set size, SSSc. For example, 

 The minimum total number of samples necessary for the IRS test image is 

RC × 340 = 6 × 340 = 2,040. 

 The minimum total number of samples necessary for the SPOT test image is 

RC × 340 = 5 × 340 = 1,700. 

 The minimum total number of samples necessary for the Leica test image is 

RC × 340 = 6 × 340 = 2,040, plus “Outliers”.  

It is clear that the minimum number of total samples estimated via Equation (4), equal to 1,225, is 

exceeded by the total number of samples per image estimated via Equation (6), equal to 2,040, 1,700 

and 2,040 respectively. Therefore, the worst case selected as minimum sample size for the IRS, SPOT 

and Leica test images is 2,040, 1,700 and 2,040 respectively, with a minimum class-specific sample 

size equal to 340. 

3.2.2. Selection of the Sampling Frame 

Compulsory to the instantiation of a sampling design is specification of a finite sample space, S, 

which is assumed to coincide with the target GEOROI, such that S ≡ GEOROI, with S represented by a 

finite set of discrete (areal) spatial units (sampling units, e.g., pixels, blocks of pixels, or  

polygons [35]) forming a complete (spatially exhaustive) partition of the GEOROI, such that S is a 

superset of the finite population U to be sampled, thus U ⊆ S ≡ GEOROI. The 2-D sampling universe 

S ≡ GEOROI formed by areal sampling units can be represented by one of two forms of sampling 

frames: a one-dimensional (1-D) list frame or a two-dimensional (2-D) area frame [24,35]. 

List frames consist of a list of all spatial units forming a complete (exhaustive) partition of the 

GEOROI, accompanied by a spatial address (i.e., location) for each unit. The sample, selected 

randomly or otherwise, is then evaluated from the list frame, independently of the 2-D sample space  

S ≡ GEOROI [35]. Because the list frame represents the collection of all spatial units, selection of 

spatial units is a one-step process. 

Alternatively, sampling from an area frame involves selection of sampling units in the 2-D  

sample space S ≡ GEOROI [24]. Area frame sampling requires, as a first step, identification of 
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dimensionless spatial locations (also called sample candidates or sample locations [24]), otherwise 

termed geo-atoms [45], equivalent to a dimensionless atomic abstraction of geographic information. 

An explicit rule for associating a unique sampling unit, say, either a pixel, polygon or block of pixels, 

with any spatial location within the area frame must be established. For example, a rule for associating 

a unique polygon with a randomly selected point location is to sample that polygon within which the 

random point fell. This particular area frame sampling strategy illustrates that it is not necessary to 

delineate all polygons in the target population to obtain the sample, like in a list-frame sampling. 

Furthermore, area frames better retain the 2-D spatial structure important for systematic sampling of a 

geospatial population [24]. 

In this work, where no complete coverage reference maps are available for the test maps, no list 

frame can be adopted for sampling. Rather, an area frame is employed for sampling. 

3.2.3. Selection of the Spatial Types of Sampling Units 

The (areal) sampling unit represents the 2-D unit of the GEOROI upon which accuracy assessment 

is carried out. The sampling unit can be defined without specifying what will be observed on that unit 

on the ground; thus no assumption about homogeneity of thematic classes for the sampling unit is 

necessary [32]. For any type of sampling unit, there are multiple acceptable sampling and response 

designs. It is therefore necessary to clearly define the sampling unit before attempting to determine the 

sampling and response designs [24]. Three basic types of areal sampling units exist [24]. 

• Pixels, representing small areas (e.g., 30 m pixel), are related to the dimensionless sample 

location described in Section 3.2.2, but because pixels still possess some areal extent, they 

partition the mapped population into a finite, though large, number of sampling units. 

• Polygons, typically irregular in shape and differing in size to approximate the shape and size of 

a target 3-D object, e.g., a target building. 

• Fixed-area plots, generally regular in shape and area which cover a chosen areal extent 

(typically a 3 × 3 or 5 × 5 pixel plot).  

It should be noted that pixels and polygons are special cases of the fixed-area plot spatial unit type. 

In the present paper, pixel units are adopted to represent all samples used by the TQI estimators  

(refer to the farther Section 3.4.1) while polygons are necessary for SQI estimators of reference  

image-objects (segments) whose shape is salient for detection, such as single-date (2-D) image-objects 

depicting man-made 4-D objects in the world-through-time, like “buildings” and “roads” (refer  

to the farther Section 3.4.1). Notably, image-objects depicting single instances of man-made  

objects-through-time (e.g., buildings, roads, etc.) are visible only in the VHR Leica image, see 

Figure 3 and refer to Tables 5–7. It means that segment-based SQIs can be estimated only from the 

Leica test image. 

3.2.4. Selection of the Sampling Strategy 

Simple random sampling (SIRS), stratified random sampling (consisting of a SIRS of ݊ elements 

from the ܰ elements in stratum ℎ), systematic sampling (with a random start and sampling interval K, 

where K is an integer), and cluster sampling are all probability sampling designs considered as 
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reference standards because, in compliance with the definition of probability sampling (refer to the 

Part 1, Section 2.6 [20]), they guarantee that: (i) each element u in the population U to be sampled has 

a positive inclusion probability, ௨ > 0, ∀ u ∈ U, (ii) the probability of an element being included in an 

arbitrary sample S of the population U, with U ⊆ S ≡ GEOROI, is known and (iii) inclusion 

probabilities associated with non-sampled units need only be knowable [32].  

In this work, no reference map is readily available for identification of class-specific strata on an a 

priori basis, therefore no stratified random sampling is possible. Given that samples in this work are 

acquired via photointerpretation (rather than, say, field campaigns), cost reduction achieved by cluster 

sampling is essentially zero. Hence, cluster sampling is not recommended herein.  

Instead, to cope with the project requirements specification of the minimum size of a reference 

class-specific sample set, SSSc ≈ 340, c = 1, ..., RC (refer to Section 3.2.1), a non-standard SIRS 

strategy is implemented: it allows the photointerpreter to stop random sampling as soon as the required 

set of 340 samples per reference class is successfully selected. This non-standard SIRS strategy adopts 

a “hit/miss” SIRS approach to target a reference class population whose distribution across the test 

image is unknown a priori. (Non-areal) sample locations (refer to Section 3.2.2), randomly selected 

across the 2-D sample space S ≡ GEOROI, are labeled by an expert photointerpreter as “hit” if they 

intersect the target reference class in compliance with the evaluation and labeling protocol (refer to the 

farther Section 3.3), while sample locations which do not intersect the target reference class are 

considered a “miss” and discarded from further analysis [32], see Figure 4. 

Figure 4. Original non-standard class-specific simple random sampling (SIRS) strategy for 

the reference class “grassland”, using a set of random spatial locations (sample 

candidates), whose selected spatial unit is pixel, see Table 7. Green random locations 

(selected as “hits”) are included in the “grassland” class-specific reference sample set, 

while red points (recognized as “misses”) are excluded. 
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With regard to the polygon-based SQI assessment of the SIAM™ maps generated from the VHR 

Leica image (refer to Section 3.2.3), the same “hit/miss” SIRS approach described in the previous 

paragraph would normally be adopted to select instances of the reference class “buildings”, which is a 

subset of the logical OR-combination of reference LC classes “Light-tone Built-up or Bright Bare 

Soil” (“LtBBrS”) and “Dark-tone Built-up or Dark Bare Soil” (“DkBDkS”), whose spatial type is 

polygon, refer to Table 7. However, since it is obvious that there are not enough buildings in the VHR 

Leica image to reach the required cardinality of 340 instances per class (refer to Section 3.2.1), all 

buildings detected by an expert photointerpreter in the Leica image are included in the sample set of 

the reference class “buildings” for SQI estimation. 

3.3. Response Design: Evaluation and Labeling Protocol 

The purpose of response design is to assign a value or label to (areal) sampling units where  

(non-areal) sample locations, selected through the sampling strategy (refer to Section 3.2.4), fell. 

Response design consists of two steps: (i) the evaluation protocol and (ii) the labeling protocol [24].  

The evaluation protocol comprises the means through which a spatial support region, defined as the 

area where “truth” classification evidences are collected, is attached to every sampling unit where a 

sample location fell [32].  

A general rule of thumb would require to select the reference data source “one step closer to the 

ground” than the RS data used to make up the test map [36] (refer to the introduction to Section 3). 

Unfortunately, when dealing with thematic maps generated from VHR imagery, it is often the case 

there is no reference data source originated: (I) at the same time of the VHR image acquisition and  

(II) one step closer to the ground. For example, to assess the accuracy of thematic maps generated 

from, say, the VHR Leica test image acquired in year 2007 and adopted in this work (refer to  

Section 2), pre-existing VHR thematic maps dated 2007 would be required, since ground visits cannot 

be performed back in time. In general, in these cases the sole data source available for reference 

population sampling is the same VHR image adopted as input by the RS-IUS whose output map has to 

be evaluated. In other words, the test and reference data sources coincide with the VHR image at hand. 

The lack of a reference data source one step closer to the ground than the HR/VHR image at hand 

should not be considered a problem, provided that the second knowledge expert (reference cognitive 

agent), the one in charge of implementing the sample evaluation and labeling phases of the map 

accuracy assessment protocol (refer to the farther Section 3.4), interprets the HR/VHR images by 

independent means from the first (test) cognitive agent, namely, the RS-IUS whose maps are being 

validated. This is to say that the reference data set should be acquired independently of the test map to 

be evaluated. 

In these experiments, where the spatial type of sampling units involved with TQI estimators is pixel 

exclusively (refer to Section 3.2.3), the spatial support region is defined as a 2-D neighborhood,  

10 × 10 pixel in size, centered on the pixel upon which the sample location fell. Similarly, the size of 

the spatial support region for sampling units involved with SQI estimators, whose spatial type is 

polygon, is defined as 10 times the size of the polygon belonging to the target reference class  

(e.g., “buildings”) where the sample location fell. 
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In series with the evaluation protocol, the labeling protocol assigns one (crisp) or more than one 

(fuzzy) reference class labels to each sampling unit where a sample location fell, based on “truth” 

classification evidences collected across the spatial support region centered on that sampling  

unit. In these experiments, for all test images and for all selected spatial support regions, visual 

evidence is collected by an expert photointerpreter to provide a crisp (“hit” or “miss”) labeling (refer to 

Section 3.2.4) [32].  

3.4. Analysis and Estimation Protocol 

Traditional symbolic pixel-based TQIs are summary statistics of class-specific first-order 

histograms [36,50], which means they are spatial context-insensitive, i.e., they are insensitive to 

changes in the 2-D spatial distribution of mapping errors. In other words, symbolic pixel-based TQIs 

investigate “quantification error” independently of “location error” [53,54]. On the other hand, 

traditional sub-symbolic context-sensitive SQIs investigate “location error” irrespective of 

“quantification error” [55]. Although highly recommended in the existing literature [53,54], location 

error estimation is almost never accomplished in the RS common practice. If a location error overlook 

appears justified in traditional moderate to low resolution EO image applications, where shape of 

image-objects is less discernible [32,49], this lack appears unreasonable in VHR image analysis.  

In this section, in compliance with the original probability sampling protocol proposed in [32],  

a set of sub-symbolic polygon-based SQIs is estimated in the 2-D pre-classification map domain 

independently of a set of symbolic pixel-based TQIs, estimated from an OAMTRX instance (refer to 

Section 3.1). 

3.4.1. Thematic Accuracy Assessment of a Classification Map 

Unlike traditional TQIs of a traditional (square and sorted) CMTRX instance, whose associated 

CVPSI value is trivial because always equal to 1 (refer to Section 3.1.2), TQIs estimated from an 

OAMTRX instance, where (ambiguous) many-to-many reference-test class relationships are allowed, 

must always be assessed and compared in combination with an OAMTRX-derived CVPSI value in 

range [0, 1] (refer to Section 3.1.2). For example, if two thematic maps of the same EO image feature 

the same set of TQI values, but CVPSI = 0.5 and 0.9 respectively, then the second map is to be 

considered the “best” one overall, because it maximizes TQIs and the CVPSI simultaneously. 

Proposed TQIs are mutually independent to cope with the non-injective property of any QI (refer to 

the Part 1, Section 2.5 [20]) and are provided with a degree of uncertainty in measurement, in 

accordance with the principles of statistics and the QA4EO guidelines [2]. 

TQI Formulations 

In a relevant portion of the existing RS literature, the use of popular pixel-based TQIs estimated 

from a CMTRX, such as the kappa coefficient, is strongly discouraged [51,56–58]. In line with these 

recommendations, well-known pixel-based TQIs selected in this paper are the traditional overall 

accuracy (ை), user’s accuracy () and producer’s accuracy () probabilities.  
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Due to the well-known non-injective property of any QI (refer to the Part 1, Section 2.5 [20]), ை 

alone is not sufficient to characterize thematic map accuracy, i.e., different thematic maps may feature 

the same ை value. Since every error is an omission from the correct category and a commission to a 

wrong category [36], the commission error (false positive) and the omission error (false negative), 

inversely related to the 	and the  estimators respectively, are commonly used in literature in 

combination with the ை . All of these TQIs, namely, ை  and the	 , , directly illustrate the 

probability of encountering a correct or incorrect labeled pixel, i.e., they allow comparisons between 

digital maps consisting of sampling units whose spatial type is pixel (refer to Section 3.2.3). 

The selected pixel-based TQIs are generally expressed in terms of the (square and sorted)  

CMTRX ⊆ OAMTRX, where reference classes are conventionally identified as columns [37] (refer to 

Section 3.1.1). In the specific case of a CMTRX, the sum of correctly classified pixels ை  is 

equivalent to the sum of the main diagonal cells, given RC reference classes [32]: 

ை = ,ோ
ୀଵ  (9) 

User’s accuracy, , represents the conditional probability that an areal unit classified as class c, 

with c = 1, …, RC, in the test map is also classified as class c in the reference sample set. Hence,  

is inversely related to commission error (false positive samples). In the specialized case of a CMTRX,  is defined as follows [32,36].  , = ∑, ,ோୀଵ = , ,ା (10)

Similarly,  represents the conditional probability than an areal unit classified as class c, with  

c = 1, …, RC, in the reference sample set is also classified as class c in the test map. Hence,  is 

inversely related to omission error (false negative samples). In the specialized case of a CMTRX,  

is defined as follows [32,36]. , = ∑, ,ோୀଵ =  ା, (11),

As previously noted (refer to Section 3.1), a (square and sorted) CMTRX is impractical to 

implement in the context of this work and is replaced by OAMTRX instances, e.g., refer to Table 8 to 

Table 13. It is therefore necessary to adjust the numerators of Equations (9–11) to account for the  

many-to-many relationships allowed in any OAMTRX instance. Additionally, parameter RC = TC in 

Equations (10) and (11) must be split into two, namely, the cardinality of the test vocabulary, TC (e.g., 

refer to Table 14), and that of the reference vocabulary, RC, where, in general, RC ≠ TC (e.g., refer to 

Tables 5–7).  

Overall Accuracy Estimation 

An analysis of Table 15 reveals the following. 

Overall, the ை index scores “very high” across pre-classifiers and input data sets. This is not due 

to a positive bias in the quality assessment protocol, in fact small but statistically significant 

differences in accuracy between the two alternative mapping systems are detected. Rather, this overall 
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effect is perfectly in line with theory: (ambiguous, fuzzy, vague) many-to-many inter-vocabulary 

relationships in an OAMTRX instance are easier to satisfy than (are relaxed versions of) unambiguous 

one-to-one inter-vocabulary relationships typical of traditional CMTRX instances (also refer to  

Section 3.1.2). This is like saying that when a statement is reasonable, but vague, then it is almost 

always right.  

Collected across pre-classifiers and input data sets, ை  estimates at the 95 percent level of 

confidence exceed the USGS ை reference standard, equal to 85% ± 2% (refer to Section 3.2.1) in 

three out of three cases by the ATCOR™-SPECL and nine out of nine cases by the SIAM™. For the 

ATCOR™-SPECL the minimum ை value is 84.26% ± 2.08% generated from the pre-classification 

map of the IRS test image while the maximum ை  estimate is 96.18% ± 1.09% for the  

pre-classification map of the VHR Leica image. The SIAM™ deductive pre-classifier produces a 

minimum ைestimate of 90.49% ± 1.67% and a maximum of 99.35% ± 0.50%.  

At the 95 percent confidence interval, the pre-classification maps of the IRS image feature the 

lowest accuracy scores across input data sets for both the SIAM™ and ATCOR™-SPECL software 

products. These low ை values are caused in part by misclassification of cloud pixels, found only in 

the IRS image (refer to Section 2).  

Table 15. Overall Accuracy (OA) = ை = Equation (9) ±δ = Equation (3) for the 

ATCOR™-SPECL and SIAM™ pre-classifications of the three test images, with α = 0.05, 

1 − α = 0.95, χ2 = 3.84 in Equation (3). 

Test Data Set 

ATCOR™-
SPECL 

(19 sp.cat.), 
POA = Eq. (9) 

+/− δ =  
Eq. (3) 

S-SIAM™ 
(Coarse = 
15 sp.cat.), 
POA = Eq. 

(9) 

+/− δ =  
Eq. (3) 

S-SIAM™ 
(Interm.  

= 40 sp.cat.), 
POA = Eq. (9) 

+/− δ =  
Eq. (3) 

S-SIAM™ 
(Fine = 68 

sp.cat.), 
POA =  

Eq. (9) 

+/− δ =  
Eq. (3) 

Number of 
Randomly 
Selected 

Reference 
Samples 

(Spatial Type: 
Pixel) 

IRS-P6 LISS-3, 
23.5 m-
resolution,  
4-band (G, R, 
NIR, MIR) 

84.26% 2.08% 90.49% 1.67% 91.47% 1.59% 96.81% 1.00% 2040 

SPOT-4 
HRVIR,  
20 m-resolution,  
4-band (G, R, 
NIR, MIR) 

92.00% 1.69% 95.47% 1.30% 98.71% 0.70% 99.35% 0.50% 1700 

 

ATCOR™-
SPECL 

(19 sp.cat.), 
POA = Eq. (9) 

 

Q-SIAM™ 
(Coarse =  
12 sp.cat.), 
POA = Eq. 

(9) 

 

Q-SIAM™ 
(Interm. 

= 28 sp.cat.), 
POA = Eq. (9) 

 

Q-SIAM™ 
(Fine = 52 

sp.cat.), 
POA = Eq. (9) 

  

Leica ADS-80,  
0.25 m-
resolution,  
4-band (B, G, R, 
NIR) 

96.18% 1.09% 97.55% 0.88% 99.17% 0.52% 99.22% 0.50% 2045 

When the input is the Leica or the SPOT test image, the SIAM™’s ை values at intermediate and 

fine semantic granularities tend to be statistically equivalent: their corresponding confidence intervals 

overlap, with the central point of one or other interval falling within the second interval (refer to 

Section 3.2.1). Across test data sets and pre-classification systems, the highest ை  estimates are 

generated from pre-classification maps of the VHR Leica image. This outcome can be explained as 



Remote Sens. 2013, 5 5241 

 

follows. First, the fine spatial resolution (0.25 m) of the Leica image results in fewer mixed pixels, 

whose lack tends to increase the map accuracy of both the ATCOR™-SPECL and SIAM™ software 

products. Second, the Leica image is the sole available test data set radiometrically calibrated into 

SURF rather than TOARF values (refer to Section 2). If the atmospheric correction pre-processing 

stage is correct (refer to the Part 1, Figure 2), per-class data variability is expected to decrease and 

classification accuracy to increase. 

Overall, at the 95 percent confidence interval, all the SIAM™’s maps, but one, exhibit significantly 

higher ை values than their ATCOR™-SPECL counterparts, where pairs of corresponding confidence 

intervals do not overlap at all (refer to Section 3.2.1). In the single case of the Q-SIAM™  

coarse-granularity map of the Leica image, the two confidence intervals overlap, but the central point 

of neither interval lies within the second interval, thus we cannot draw a conclusion about the 

significance of this ை pair difference (refer to Section 3.2.1). 

The conclusion of this section is that statistically significant differences in ை estimates between 

the ATCOR™-SPECL and SIAM™ deductive pre-classifiers tend to increase in favor of the latter if, 

first, the semantic cardinality of the SIAM™ pre-classification map increases and, second, the spatial 

resolution of the input image gets coarser. 

Producer’s Accuracy Estimation 

An analysis of Table 16 reveals the following. 

Overall, the SIAM™ provides, at fine, intermediate and coarse semantic granularity, statistically 

significant higher values of   than the ATCOR™-SPECL in 14 of 51 instances, while the 

ATCOR™-SPECL preliminary classification maps show statistically significant higher values of  

than the SIAM™ preliminary classification maps in three of 51 instances. The  values of the two 

pre-classifiers are not significantly different in the remaining 34 cases. 

The adopted  requirement of 70% ± 5% (refer to Section 3.2.1) is exceeded in 15 out of 17 cases 

by the ATCOR™-SPECL, with one class below the threshold and one class not significantly different 

than the threshold at the 99 percent confidence interval. The SIAM™ pre-classification maps at coarse, 

intermediate and fine semantic granularity exceed this threshold in 49 out of 51 cases, with two 

reference LC classes falling below the threshold. The four cases not above the target  threshold are 

examined hereafter.  

In the pre-classification maps of the IRS image, index   scores low for the reference  

class “Clouds, cloud-shadows or shadows” (“Cl/Sh”). These   estimates are 16.47% for the  

ATCOR™-SPECL and 55.88%, 55.88% and 83.53% for the SIAM™ maps at coarse, intermediate and 

fine semantic granularity. Misclassifications of the reference class “Cl/Sh” in the ATCOR™-SPECL 

pre-classification are often due to soil-related spectral categories, e.g., “sparse vegetation/soil”, “dry 

vegetation/soil” and “dark vegetation”, refer to Table 2. In the SIAM™ pre-classifications these 

mapping errors are related to the coarse spectral categories “Barren land or Built-up” (“BB”) and 

“Vegetation” (“V”). In both cases, misclassification of vegetation-related categories occurs in areas of 

strong shadows over forest cover while misclassification of soil-related classes is located within 

clouds. Separation of the reference class “Cl/Sh” into two distinct reference classes, “Cl” and “Sh”, 

would allow more comprehensive analysis of these errors. However, the practical consideration that, in 
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the IRS test image, the occurrence of this reference class is below the minimum per-class sample size 

of 340 pixels required by the modified SIRS strategy implemented in this work makes a split of  

parent-class “Cl/Sh” into child-classes Cl” and “Sh” impractical (refer to Section 3.2.1). Alternatively, 

a “fuzzy” reference labeling scheme which applies more than one label to a reference sample could be 

implemented. Unfortunately, whereas the construction of an OAMTRX/CMTRX is straightforward 

and non-controversial when the semantic labels of sampling units are crisp (hard), the method to 

construct an OAMTRX/CMTRX is not obvious at all when semantic labels are soft (fuzzy) [32,34]. 

Table 16. Producer’s Accuracy =   = Equation (11) ±δ = Equation (5) for the  

ATCOR™-SPECL and SIAM™ pre-classifications of the three test images with α = RC/100, 

1 − α/RC = 0.99, χ2
(1, 1-α/RC) = 6.63 in Equation (5).  

IRS-P6 LISS-3, 
23.5 m-
Resolution,  

4-Band (G, R, 
NIR, MIR), 
Reference LC 
Classes (Refer 
to Table 5) 

ATCOR
™- 

SPECL 

(19 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-SIAM™
(Coarse =  

15 sp. cat.) 
, 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-
SIAM™
(Interm. 

=  

40 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-SIAM™ 
(Fine =  

68 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

Number of 

Randomly 
Selected 

Reference 

Samples 
(Spatial  

Type: Pixel) 

Cl/Sh 16.47% 5.18% 55.88% 6.93% 55.88% 6.93% 83.53% 5.18% 340 

BBS 99.41% 1.07% 94.12% 3.29% 94.12% 3.29% 98.24% 1.84% 340 

Range/MP 97.94% 1.98% 99.71% 0.76% 99.71% 0.76% 99.71% 0.76% 340 

VL-M NIR 98.53% 1.68% 98.53% 1.68% 99.71% 0.76% 100.00% 0.00% 340 

H-VH NIR 100.00% 0.00% 99.71% 0.76% 100.00% 0.00% 100.00% 0.00% 340 

Water 93.24% 3.51% 95.00% 3.04% 99.41% 1.07% 99.41% 1.07% 340 

SPOT-4 
HRVIR, 20 m-
Resolution,  

4-Band (G, R, 
NIR, MIR), 
Reference LC 
Classes (Refer 
to Table 6) 

ATCOR
™- 

SPECL 

(19 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-SIAM™
(Coarse =  

15 sp. cat.) 
, 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-
SIAM™
(Interm. 

=  

40 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

S-SIAM™ 
(Fine =  

68 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

Number of 

Randomly 
Selected 

Reference 

Samples 
(Spatial  

Type: Pixel) 

BBS 98.82% 1.51% 94.41% 3.21% 94.41% 3.21% 97.65% 2.12% 340 

Range/MP 97.65% 2.12% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

VL-M NIR 99.71% 0.76% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

H-VH NIR 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

Water 63.82% 6.71% 82.94% 5.25% 99.12% 1.31% 99.12% 1.31% 340 

Leica ADS-80,  

0.25 m-
Resolution,  

4-Band (B, G, 
R, NIR), 
Reference LC 
Classes (Refer 
to Table 7) 

ATCOR
™- 

SPECL 

(19 sp. 
cat.) , 

PPA = Eq. 
(11) 

+/− δ 
=  

Eq. 
(5) 

Q-SIAM™
(Coarse =  

12 sp. cat.) 
, 

PPA = 

Eq. (11) 

+/− δ 
= 

Eq. 
(5) 

Q-
SIAM™
(Interm. 

= 

28 sp. 
cat.) , 

PPA =  

Eq. (11) 

+/− δ 
=  

Eq. 
(5)  

Q-
SIAM™ 
(Fine =  

52 sp. 
cat.) , 

PPA = 

Eq. (11) 

+/− δ 
=  

Eq. 
(5) 

Number of 

Randomly 
Selected 

Reference 

Samples 
(Spatial  

Type: Pixel) 

LtBBrS 99.71% 0.76% 97.94% 1.98% 97.94% 1.98% 97.94% 1.98% 340 

DkBDkS 79.71% 5.62% 97.65% 2.12% 97.35% 2.24% 97.35% 2.24% 340 

NDVI1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

NDVI2 98.82% 1.51% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

TrCr 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 340 

SH 98.53% 1.68% 99.41% 1.07% 99.41% 1.07% 89.71% 4.24% 340 

Outlier -- -- -- -- 5 
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To summarize, the SIAM™ appears capable of outperforming the ATCOR™-SPECL in the color 

mapping of clouds and cloud-shadows. However, both first-stage deductive pre-classifiers are not 

expected to be successful as cloud detectors based on per-pixel (color) properties exclusively, while 

spatial information is ignored. This means that, to detect clouds effectively, a second-stage  

context-sensitive one-class cloud detection classifier, driven by the SIAM™’s first-stage knowledge, 

should be developed in compliance with the novel hybrid RS-IUS architecture proposed in [10–19] 

(refer to the Part 1, Section 4.1). 

With regard to the multi-granule pre-classification of the SPOT test image, Table 16 shows that  

indicators are lower than expected for the reference LC class “Water” in the ATCOR™-SPECL map 

(62.82% ± 6.71%) and the SIAM™ map at coarse granularity (82.94% ± 5.25%). In this reference LC 

class, misclassifications occur with spectral category “Asphalt/dark sand” for the ATCOR™-SPECL 

and spectral category “Thin cloud over shrub-rangeland or herbaceous rangeland or bare soil and 

built-up” (“TNCL_SHRBR_HRBCR_BB”) for the SIAM™ maps, respectively.  

Finally, in the pre-classification maps of the Leica image, all   indicators far exceed the  

70% ± 5% per-class accuracy target (refer to Section 3.2.1). Slight decreases in performance are 

observed in the ATCOR™-SPECL pre-classification map overlapping with the reference LC class 

“Dark Built-up or Dark Soil” (“DkBDkS”) (79.71% ± 5.62%, with misclassification errors attributed to 

the spectral category “not classified”. Similarly, the SIAM™ pre-classification map at fine semantic 

granularity demonstrates a   value below average for the LC class “Shadow” (“SH”). Many  

so-called errors in this LC class are due to spectral category “Average shrub-rangeland with very low 

near-infrared response” (“ASHRBRVLNIR”), which actually features a spectral overlap with 

vegetation in shadow, since the SIAM™ is capable of “looking-through” both haze/thin clouds and 

shadows (refer to the Part 1, Section 4.2.1 [20]). To say that this spectral category should be no longer 

considered as a source of errors for the detection of the LC class “SH”. This case is proposed as an 

example of reference-test class relation, subjectively interpreted as “incorrect” by a knowledge 

engineer, which would deserve to be reconsidered to become community-agreed upon. If the 

reference-test class pair (“SH”, “ASHRBRVLNIR”) is considered as a “correct” entry, then TQI values, 

like ை  and  , are expected to increase at the cost of a decrease of the CVPSI value. This 

combination of effects should be carefully assessed by the domain expert, because mutually 

independent TQIs, SQIs and the CVPSI should be maximized simultaneously (also refer to  

Section 3.1.2). 

User’s Accuracy Estimation 

Complete  measures are accessible via anonymous ftp [52]. While  is a useful TQI for many 

purposes (refer to the introduction to Section 3.4.1), the adopted probability sampling design specifies 

the cardinality of reference rather than test classes (refer to Section 3.2.1). The consequence is that 

while it is ensured that each reference category obtains a minimum of 340 samples, for practical 

reasons no such requirement is imposed for test categories. For example, with a possible 68 output 

spectral categories in an S-SIAM™ map at fine semantic granularity (refer to Table 3), user’s accuracy 

assessment could require up to 340 × 68 = 23,120 samples overall, according to the Lunetta and 

Elvidge sample size estimation criterion (refer to Section 3.2.1). As a result, in the test maps at hand 
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many test categories are non-represented or underrepresented (which is particularly true in the 

SIAM™’s maps at fine semantic granularity), therefore they suffer from a large error tolerance.  

User’s accuracy tables, available via anonymous ftp [52], show that   measures for test 

categories, whose occurrence in the test maps at hand is considered conventionally significant (greater 

than 0.15% of the test map area, refer to Table 8 to Table 13) typically exceed the target per-class  

70 percent accuracy threshold (refer to Section 3.2.1), with some notable exceptions. Considered as 

exceptions and shown in Table 17 are spectral categories whose   value is low while their 

occurrence is greater than 100 samples, arbitrarily set as a filtering criterion of “adequate sampling”. 

Table 17 also shows that sources of pUA errors are in agreement with the low pPA estimates found in 

Table 16. For example, in the ATCOR™-SPECL pre-classification map of the IRS test image, low pUA 

scores observed for test classes “Dry Vegetation/Soil” and “Sparse Vegetation/Soil” in Table 17 

account for the low pPA value scored by the reference class “Cl/Sh” in Table 16. 

Table 17. Notable test spectral categories demonstrating low User’s Accuracy =   

= Equation (10) ±δ = Equation (5) for the ATCOR™-SPECL and SIAM™  

pre-classification maps of the three test images with α = TC/100, 1 − α/TC = 0.99,  

χ2
(1, 1-α/TC) = 6.63 in Equation (5). 

Pre-Classifier Test Image 
Number of Test 

Classes = TC 
Test Spectral Category * 

pUA = Eq. (10)  

± δ = Eq. (5). 
Source of Error 

ATCOR™-

SPECL 

IRS, 23.5  

m-resolution,  

4-band (G, R,  

NIR, MIR) 

19 sp. cat. 

Dry Vegetation/Soil 
55.86%  ± 

12.12% 
Clouds/Shadows 

Sparse Vegetation/Soil 21.83%  ± 7.58% Clouds/Shadows 

SPOT, 20  

m-resolution,  

4-band (G, R,  

NIR, MIR) 

19 sp. cat. Asphalt/Dark Sand 17.27%  ± 8.26% Water 

S-SIAM™ 

IRS 
Coarse = 15 sp. 

cat. 
BB (Bare soil or Built-up) 50.49%  ± 8.97% Clouds 

SPOT 
Coarse = 15 sp. 

cat. 
TNCL_SHRBR_HRBCR_BB 66.26%  ± 9.54% Water 

* Note: Only classes which are “adequately sampled” (>100 samples) are included. 

3.4.2. Spatial Accuracy Assessment of a Classification Map 

Ground-level 4-D objects-through-time, whose shape information is salient for classification 

purposes, such as man-made objects like “buildings” and “roads”, are typically indistinguishable as 

image-objects in spaceborne moderate (e.g., Landsat) to low (e.g., Moderate Resolution Imaging 

Spectroradiometer, MODIS) spatial resolution images. Single entities of man-made objects are more 

clearly distinguishable in spaceborne/airborne VHR (<5 m) imagery, like the airborne Leica test image 

shown in Figure 3. Hence, in the Leica test image, the spatial type of image-objects belonging to the 

reference LC class “buildings” is polygon (refer to Section 3.2.3).  

In the computer vision and RS literature, a segmentation map is a sub-symbolic partition of an 

image where a discrete 2-D segment is a connected image-object (polygon) whose sub-symbolic 

identifier, provided with no semantic information (refer to the Part 1, Section 2.1 [20]), is typically an 
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integer number, e.g., segment 1, segment 2, etc. Notably, a unique (sub-symbolic) segmentation map 

can be generated from a (symbolic) thematic map (binary or multi-level image) [31], but the contrary 

does not hold because different thematic maps can generate the same segmentation map, i.e., no 

thematic map can be unequivocally inferred from a segmentation map (refer to the Part 1,  

Section 4.4). 

In compliance with the original protocol proposed in [32], a set of sub-symbolic polygon-based 

SQIs is estimated in the 2-D pre-classification map domain independently of a set of traditional 

symbolic pixel-based TQIs extracted from an OAMTRX instance (refer to Section 3.4.1). Proposed 

SQIs are independent one another, to cope with the non-injective property of any QI (refer to the  

Part 1, Section 2.5 [20]), and are provided with a degree of uncertainty in measurement in compliance 

with the principles of statistics and the QA4EO guidelines [2]. 

SQI Formulations 

In typical geographic object-based image analysis (GEOBIA) applications [59–66] (refer to the  

Part 1, Section 2.2 [20]), like building detection in VHR images, possible SQI formulations are 

proposed by McGlone and Shufelt in [67] and applied by Hermosilla et al. [68]. Inversely related to 

spatial error indices originally presented by Persello and Bruzzone in the RS literature [55], four 

general-purpose global SQIs are proposed in [32]. A global (image-wide) SQI is computed as the mean 

of the sum over all the values of a local SQI estimator. A local SQI estimator investigates a specific 

spatial relationship, e.g., oversegmentation, undersegmentation or edge mis-location, between the i-th 
reference image-object belonging to a reference LC class ܿ , RO୧,ୡ , and its corresponding target 

(mapped) image-object, identified as ܶ ܱ,, located in the test segmentation map as the sub-symbolic 

segment with the most pixels in common with the reference object, such that [55]: ܶ ܱ, = ܶ	∀݃ݎܣ ܱ ∈ หܴݔܽ݉	ܱܶ ܱ, ∩ ܶ ܱห, ܿ = 1,… , ,ܥܴ ݅ = 1,… , ܴܶ(ܿ) 
(12)

where symbol |∙| represents the set cardinality, namely, the size of the segment-pair overlapping area, 

and RT(c) is the total number of reference objects in reference class c, with c = 1, ..., RC. Therefore, a 

reference class-specific global SQI is computed as: 

ܫܳܵ = 1ܴܶ(ܿ)  ,൫ܴܫܳܵ ܱ,, ܶ ܱ,൯ோ்()
ୀଵ , ,൫ܴܫܳܵ ܱ,, ܶ ܱ,൯ ∈ (0,1], ܫܳܵ	 ∈ (0,1],ܿ = 1,… ,  ܥܴ

(13)

It is worth mentioning that this global SQI formulation accounts for the polygon-specific inclusion 

probability, which increases with the polygon size and whose inverse value determines the weight 

attached to each sampling unit in probability sampling [32]. 

The four local SQI estimators proposed in [32] are summarized hereafter. Inversely related to the 

oversegmentation error presented in [55], the local Oversegmentation SQI (OSQI) estimator quantifies 
the degree of overlap between ܴ ܱ, and ܶ ܱ, with respect to ܴ ܱ, [32].  ܱܵܳܫ,(ܴ ܱ,, ܶ ܱ,) = หܴ ܱ, ∩ ܶ ܱ,หหܴ ܱ,ห ∈ (0,1], ܿ = 1,… , (14) ܥܴ
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Complementary to the local OSQI function, the local Undersegmentation SQI (USQI) estimator is 

inversely related to the undersegmentation error presented in [55]. In practice, observed OSQI and 

USQI values tend to be inversely related, though this observed relationship is not axiomatic (which is 

evidence that the OSQI and USQI are in fact not correlated). The local USQI quantifies the degree of 
overlap between ܴ ܱ, and ܶ ܱ, with respect to ܶ ܱ,. ܷܵܳܫ,(ܴ ܱ,, ܶ ܱ,) = หܴ ܱ, ∩ ܶ ܱ,หหܶ ܱ,ห ∈ (0,1], ܿ = 1, … , (15) ܥܴ

Image-contour detection is the dual problem of image-object segmentation [10–19]. Inspired to the 

edge location error index presented in [55], two Fuzzy Edge Overlap SQIs (FEOQIs) measure the 

precision (inverse of distance) of the contour of the target object relative to the contour of the reference 

object and vice versa. For the purpose of edge extraction, a buffer half-width distance parameter, 

represented as ݁(∙), must be user-defined. The included buffer distance is necessary to create an areal 

object around an edge (since edges are lines, hence have no thickness), but is also useful for reducing 

the impact of accidental spatial errors inevitably introduced in the localization of reference contours 

through human photointerpretation. It is worth noting that while the buffer half-width distance is a free 

parameter to be user-defined, the value of ݁ should be as small as possible to avoid inflating FEOQI 

values. For example, 2 pixels seems a reasonable buffer half-width in the Leica test image whose 

spatial resolution is 0.25 m, therefore ݁ is set equal to 0.50 m. The first local FEOQI estimator, called 

FEOQI_Reference (FEOQI_R) ∈ (0, 1), which quantifies the similarity between reference and test 

object edges with respect to the reference object, is computed as follows [32]. ܫܱܳܧܨ_ܴ,(ܴ ܱ,, ܶ ܱ,) = ห݁(ܴ ܱ,) ∩ ݁(ܶ ܱ,)หห݁(ܴ ܱ,)ห ∈ (0,1], ܿ = 1, … ,  (46) .ܥܴ

The second local FEOQI estimator, called FEOQI_Test (FEOQI_T) ∈ (0, 1], which quantifies the 

similarity between reference and test object edges with respect to the test object is the dual function of 

the FEOQI_R estimator. It is computed as follows [32]. ܫܱܳܧܨ_ ܶ,(ܴ ܱ,, ܶ ܱ,) = ห݁(ܴ ܱ,) ∩ ݁(ܶ ܱ,)หห݁(ܶ ܱ,)ห ∈ (0,1], ܿ = 1,… , (17) .ܥܴ

The goal of an image segmentation algorithm would be to maximize the aforementioned SQIs up to 

value 1 (whereas error indices, like those in [55], should be minimized to 0), where 1 represents 

perfect agreement (with respect to the divisor) between reference and target objects. In the worst case 

scenario, where only one pixel is in common between every reference and mapped object pair, SQIs 

approach zero. The four proposed local SQI estimators are shown in Figure 5. For example, in  
Figure 5a, there is perfect agreement between the areas of the ܴ ܱ, and ܶ ܱ, with respect to ܶ ܱ,, but 

not with respect to ܴ ܱ, . Hence, in Figure 5a, ܱܵܳܫ,(ܴ ܱ,, ܶ ܱ,) is expected to be “low” while ܷܵܳܫ,(ܴ ܱ,, ܶ ܱ,) is expected to tend to 1.  
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Figure 5. Illustration of the four local Spatial Quality Indicator (SQI) estimators adopted in 

the probability sampling protocol for thematic map accuracy assessment selected 

from [32]. The i-th reference image-object belonging to land cover (LC) class c, identified 

as ROi, is shown in red and the mapped (test) image-object, located via Equation (12) and 

identified as TOi,c, is shown in black. (a) Example where the OSQIi,c(ROi,c,TOi,c) value is 

low. (b) example where the USQIi,c(ROi,c,TOi,c) is low. (c) example where 1 ≥ 

FEOQI_Ri,c(ROi,c,TOi,c) > FEOQI_Ti,c(ROi,c,TOi,c) ≥ 0. 

),,,(, ciTOciROciOSQI
= Eq. (14)

 ),,,(, ciTOciROciUSQI
= Eq. (15)

 
),,,(,_ ciTOciROciRFEOQI
= Eq. (16) 

),,,(,_ ciTOciROciTFEOQI
= Eq. (17)

 

 
 

(a) (b) (c) 

SQI Estimation 

It is common knowledge that the generation of a segmentation map from a binary or multi-level 

image (e.g., a thematic map) is a well-posed problem in the Hadamard sense (i.e., the problem solution 

exists and is unique) [69] (refer to the Part 1, Section 4.4 [20]). This well-posed segmentation problem 

is typically solved by means of a computationally efficient two-pass connected-component image 

labeling algorithm ([31]; p. 197). For example, the SIAM™ software product univocally and 

automatically generates a three-scale sub-symbolic image segmentation map from a three-granule 

preliminary classification map of an input EO optical image using an 8-adjacency pixel connectivity 

model. Hence, the SIAM™ three-scale sub-symbolic image segmentation map of the VHR Leica 

image (see Figure 3c) can be selected for polygon-based SQI assessment of the reference 

class “buildings”.  

Unfortunately, unlike the SIAM™, the ATCOR™-SPECL software toolbox does not deliver as 

output any segmentation map together with its single-granule pre-classification map of an input  

MS image. Therefore, the polygon-based SQI assessment procedure cannot be applied to any  

ATCOR™-SPECL’s segmentation map, but to the SIAM™’s maps of the Leica test image exclusively. 

To account for a reference class-specific sample size requirement of 340 samples (refer to  

Section 3.2.1), all buildings identified by an expert photointepreter in the Leica test image are selected 

as reference image-objects.  

SQI estimates of the SIAM™’s three-scale segmentation map generated from the VHR Leica test 

image are displayed in Table 18. Overall these SQI values tend to be lower than their respective TQI 

values. In line with theoretical expectations, the USQI, FEOQI_T, and Average SQI (ASQI) values 

increase (vice versa, decrease) with the SIAM™ semantic cardinality (vice versa, granularity), while 
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the OSQI values, complementary to USQI’s, decrease with semantic cardinality. On the contrary, 

FEOQI_R shows no definitive trend with regard to semantic granularity. These results agree with 

theory because of the difference in semantics between spectral categories in the (2-D) image domain 

and LC classes in the 4-D world-through-time (refer to the Part 1, Section 2.3 [20]). For example, 

adjacent but distinct 3-D objects observed at a given time, if composed of materials with similar 

spectral properties, like instances of class “roads” and class “buildings”, may be mapped onto the same 

SIAM™ spectral category label at coarse semantic granularity, but onto different color-based category 

labels at fine semantic granularity [11,36]. This explains why OSQI is monotonically decreasing with 

the SIAM’s semantic cardinality while USQI and FEOQI_T are monotonically increasing. An example 

of this phenomenon is illustrated in Figure 6. 

Table 18. Mean of the sum over all values of a local SQI estimator = Equation (14) to 

Equation (17) ±δ = Equation (3), where the mapped sub-symbolic image-objects are 

identified via Equation (12) from the reference segments of class buildings. Mapped  

image-objects belong to the three-scale segmentation map automatically generated from 

the SIAM™ three-granule pre-classification map of the Leica test image, with α = 0.05,  

1 − α = 0.95, χ2 = 3.84 in Equation (3). 

Q-SIAM™  
Semantic 
Granularity 

Number of 
Randomly 
Selected 

Reference 

Samples 
(Spatial 
Type: 

Polygon) 

OSQI 
× 

100% 

= Eq. 
(14) 

+/− δ = 

Eq. (3) 

USQI 

× 
100% 

= Eq. 
(15) 

+/− δ 

= Eq. 
(3) 

FEOQI
-R 

× 
100% 

= Eq. 
(16) 

+/− δ 

= Eq. 
(3) 

FEOQI
-T 

× 100 

= 
Eq.(17) 

+/− δ 

= Eq. 
(3) 

Percen
t 

Averag
e SQI 

(ASQI) 

Coarse = 12 109 88.76% 5.92% 31.88% 8.74% 78.18% 7.75% 26.28% 8.26% 56.28% 

Intermediate = 
28 

109 81.73% 7.25% 50.07% 9.38% 82.09% 7.19% 38.50% 9.13% 63.10% 

Fine = 52 109 75.62% 8.05% 77.78% 7.8% 77.75% 7.8% 56.92% 9.29% 72.02% 

Conversely, at fine semantic granularity, underestimation of the ASQI value can be due to a 

phenomenon causing reference-test image-object pair mismatches different from that described in the 

previous paragraph. This underestimation effect occurs when a single reference image-object, featuring 

a homogeneous symbolic meaning (e.g., a reference image-object belonging to the LC class 

“buildings”), receives multiple labels of color-based categories (refer to the Part 1, Section 4.2), 

typically as a result of intra-object changes in solar illumination conditions. This case of test-reference 

segmentation mismatch is shown in Figure 7. 

Furthermore, as alluded to in the formulation of the FEOQI estimators, accidental errors introduced 

by the photointerpretation process are expected to have a greater role in the SQI calculations than in 

the TQI calculations, due to the fact that delineation of reference image-object boundaries is more 

difficult than assigning a semantic label to a specific pixel location. 
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Figure 6. Target (mapped) image-object selection in the SIAM™ map of the Leica image 

at coarse semantic granularity, refer to Equation (12). (a): The closed red contour identifies 

a reference image-object of the LC class “buildings”, selected by an expert photointerpreter 

in the Leica image. (b): SIAM™’s pre-classification map of the Leica image at coarse 

semantic granularity. The boundary of the reference segment is superimposed in red. 

(c): SIAM™’s segmentation map automatically generated from the SIAM™  

pre-classification map at coarse semantic granularity. Each (connected) segment is 

identified by a different integer value and (should be) depicted in a different gray-tone. The 

boundary of the reference segment is superimposed in red. (d): The yellow segment is the 

target (mapped) object selected according to the reference-test segment pair selection 

criterion, see Equation (12). Spatial adjacency and spectral similarity of roads and 

buildings leads to the selection of a mapped object (in yellow) whose extension covers a 

large portion of the image, equivalent to an undersegmentation error. Hence, the USQI and 

FEOQI-T values tend to be low when the semantic granularity of the SIAM™  

pre-classification map is coarse. 

 
  

±0 20 40 6010
Meters

(a) (b) 

(c) 

(d) 
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Figure 7. Target (mapped) image-object selection in the SIAM™ map of the Leica image 

at fine semantic granularity, refer to Equation (12). (a): The closed red contour identifies a 

reference image-object of the LC class “buildings”, selected by an expert photointerpreter 

in the Leica image. (b): SIAM™’s pre-classification map of the Leica image at fine 

semantic granularity. The boundary of the reference segment is superimposed in red. 

(c): SIAM™’s segmentation map automatically generated from the SIAM™’s  

pre-classification map at fine semantic granularity. Each (connected) segment is identified 

by a different integer value and (should be) depicted in a different gray-tone. The boundary 

of the reference segment is superimposed in red. (d): The yellow segment is the target 

(mapped) object selected according to the reference-test segment pair selection criterion, 

see Equation (12). Note that the relevance of the road/building adjacency and spectral 

similarity effect, discussed in Figure 6 as a possible cause of undersegmentation errors, 

decreases in the SIAM™’s map at fine semantic granularity, which is more prone to 

oversegmentation errors. 

 
  

(a) (b) 

(c) (d) 
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3.4.3. Remarks 

Based on a realistic many-to-many association model (represented by “correct” entries distributed 

across an OAMTRX instance, refer to Section 3.1) between a pair of test and reference semantic 

vocabularies which, in general, may not coincide (refer to the Part 1, Section 4.2 [20]), symbolic  

pixel-based TQIs, collected in this section, are: (i) inversely related to so-called “quantification 

errors” [53,54], and (ii) insensitive to the geospatial distribution of errors, related to the so-called 

“location error” [53,54], refer to the introduction to Section 3.4.  

On the other hand, based on a one-to-one association model between one reference polygon and one 

mapped sub-symbolic polygon, see Equation (12), sub-symbolic polygon-specific SQIs, collected in 

this section, are: (i) inversely related to “location errors”, estimated according to Equations (12–17), 

and (ii) insensitive to so-called “quantification errors” [53,54]. For example, SQIs are independent of 

the semantic label of the mapped polygon detected via Equation (12), i.e., they are insensitive to 

whether or not the pair of semantic labels of the reference and mapped objects identifies a “correct” 

entry in the OAMTRX instance at hand.  

Moreover, Equation (12), adopted to detect a sub-symbolic mapped polygon of a reference polygon, 

is unable to capture any possible “correct” one-to-many association between one polygon belonging to 

a specific reference class (e.g., an LC class) with one or more polygons belonging to a set of “correct” 

test classes (e.g., spectral categories). This means that, based on theoretical considerations exclusively, 

in the second type of inter-map comparisons described in the introduction to Section 3.1, where 

reference and test thematic vocabularies do not coincide and where one-to-many reference-to-test class 

relations (e.g., one LC class maps into several spectral categories) can be considered “correct”, in 

agreement with the CVPSI2 formulation proposed in the Appendix, SQIs computed according to 

Equations (12–17) are expected to be negatively biased (i.e., underestimated), whereas the same SQI 

formulas have no bias when applied to the first type of inter-map comparisons, described in the 

introduction to Section 3.1, where one-to-one test-reference class relations can be found exclusively.  

To conclude this section, in a thematic map accuracy assessment task, where many-to-many 

associations typically hold between reference LC classes and test classes, like in Tables 8–13, it is 

reasonable to expect that estimated TQI values are higher than SQI estimates, because the latter are, 

first, better suited to cope with one-to-one inter-vocabulary associations and, second, negatively 

affected by undesired effects (like those shown in Figures 6 and 7). This may explain why, in the 

proposed experiments, the ASQI values reported in Table 18 are significantly lower than TQI values 

shown in Tables 15 and 16. 

4. QIOs Assessment 

In agreement with the Part 1, Section 2.5 [20], a set of QIOs is selected and instantiated for the 

comparison of the ATCOR™-SPECL and SIAM™ software products in operating mode, to comply 

with the QA4EO guidelines (refer to the Part 1, Section 3 [20]).  

Since the ATCOR™-SPECL and SIAM™ static decision-tree pre-classifiers share the abstraction 

levels of computational theory and, to some degree, knowledge/information representation, but differ 

at the abstraction levels of algorithms and implementation (refer to the Part 1, Section 4 [20]), their 
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corresponding QIO values are expected to be different, but “similar”, which means they are expected 

to share the same order of magnitude. 

Estimated QIOs of the ATCOR™-SPECL and SIAM™ software products are compared as follows. 

(i) Degree of automation. It is estimated as the inverse of the number of system  

free-parameters to be user-defined, which is null, hence degree of automation is 

maximum, i.e., it cannot be surpassed by alternative approaches. Both preliminary 

classifiers are termed “fully automatic” [21], i.e., they require neither input parameters 

to be user-defined nor training data to run (refer to the Part 1, Section 4.1 [20]).  

(ii) Effectiveness, intended as accuracy of the pre-classification map. Map accuracy 

measures are split into independent QIs, namely, TQIs, SQIs and the CVSPI, see 

Section 3. The TQI values of the SIAM™ tend to be significantly higher (in statistical 

terms) than the ATCOR™-SPECL’s. Also the CVPSI values of the SIAM™ at the 

intermediate and fine semantic granularities are higher than those of the  

ATCOR™-SPECL single-granule maps. Estimated for the SIAM™ exclusively, SQIs 

tend to be lower than their corresponding TQIs (refer to Section 3.4.2). 

(iii) Efficiency is estimated as the inverse of computation time, because memory 

occupation is negligible, both algorithms being pixel-based. The two deductive  

pre-classifiers are context-insensitive (pixel-based), non-iterative (one-pass) and  

non-adaptive to input data (prior knowledge-based), hence they are computationally 

efficient. For example, in a laptop computer provided with a Windows operating 

system, SIAM™ requires three minutes to generate as output three pre-classification 

maps from a 7-band Landsat full scene, approximately 7,000 × 7,000 pixels in size. In 

practice, both pre-classifiers can be considered near real-time. 

(iv) Robustness to changes in input parameters cannot be surpassed by alternative 

approaches, because no system free-parameter exists.  

(v) Robustness to changes in input data acquired across time, space and sensors is 

investigated in Section 3, in addition to the existing literature [6–19]. It can be 

considered (qualitatively) “high”. This is due to a combination of effects. First, the 

required radiometric calibration constraint guarantees harmonization of MS data 

acquired across time, space and sensors (refer to the Part 1, Section 4.2.1 [20]). 

Second, the two pre-classifiers are pixel-based, i.e., both systems work at the spatial 

resolution of the imaging sensor whatever it is, i.e., they are spatial  

resolution-independent. Third, the two rule-based mapping system implementations 

pursue redundancy of the rule set. Actually, redundancy of the SIAM™ rule set 

appears far superior to that of the ATCOR™-SPECL rule set at the expense of a higher 

level of software complexity of the former. In practice, both systems are eligible for 

use with any existing or future planned spaceborne/airborne optical mission whose 

spectral resolution overlaps with Landsat’s, irrespective of spatial resolution (e.g., 

refer to the Part 1, Table 3 and the Part 1, Table 4 [20]). For example, starting from a 

Landsat spectral resolution of seven bands, ranging from visible to thermal 

electromagnetic wavelengths (refer to the Part 1, Tables 3 and 4 [20]), the SIAM™ 
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decision tree can work with as low as two input bands, namely, one visible and one NIR 

channel [12–14]. 

(vi) Scalability, to cope with changes in sensor specifications, is investigated in Section 3, 

in addition to the existing literature [6–19]. It can be considered “high”, for the same 

reasons of point (v).  

(vii) Timeliness, from data acquisition to data-derived high-level product generation, is 

equivalent to computation time, because user interactions are zero. Since their 

computation time is low then their timeliness is extremely favorable (“low”).  

(viii) Costs. The combination of high computation efficiency with no user interactions 

implies that costs in computer power and manpower are “low”.  

To summarize, according to collected QIO values, including CVPSI, TQI and SQI values (refer to 

Section 3), the ATCOR™-SPECL and SIAM™ deductive pre-classifiers accomplish automatic and 

near real-time detection of spectral categories in an input single-date MS imagery, where automation 

does not come at the expense of accuracy, robustness to changes in the input data set or scalability, but 

at the expense of the informative content of the output spectral-based semi-concepts whose semantic 

meaning is “low”, namely, is equal or inferior to that of target 4-D LC classes-through-time (refer to 

the Part 1, Section 2.3 [20]). In the proposed set of experiments, the CVPSI and TQI values of the 

SIAM™ tend to outperform those of the ATCOR™-SPECL. 

5. Conclusions 

The primary objective of this paper is to provide, in accordance with the Quality Assurance 

Framework for Earth Observation (QA4EO) guidelines [2], a quality assessment of two alternative 

operational (turnkey, ready-to-go) software products: the Spectral Classification of surface reflectance 

signatures (SPECL) and the Satellite Image Automatic Mapper™ (SIAM™). The former is 

implemented as a non-validated secondary product within the Atmospheric/Topographic Correction 

(ATCOR™)-2/3/4 commercial software toolbox [6–8,9]. The latter has been presented in recent years 

in the remote sensing (RS) literature [10–19], where enough information is provided for the SIAM™ 

implementation to be reproduced [11,17].  

To the best of these authors’ knowledge, the ATCOR™-SPECL and SIAM™ software products are 

the only two pre-attentive vision expert systems (deductive inference systems for pre-attentional 

vision) in operating mode made available to date to the remote sensing (RS) community for “fully 

automatic” near real-time preliminary classification (pre-classification) of radiometrically calibrated 

spaceborne/airborne multi-resolution MS images. “Fully automatic" means that the pre-attentional data 

mapping system requires neither user-defined parameters nor training data sample to run [21].  

For the sake of simplicity, this paper is split into two: Part 1—Theory [20] and the present  

Part 2—Experimental results.  

The Part 1 provides the present Part 2 with an interdisciplinary terminology and a theoretical 

background. To comply with the principle of statistics and the QA4EO guidelines discussed in the  

Part 1 [20], the present Part 2 applies a novel probability sampling protocol for thematic map quality 

assessment, selected from the recent literature [32], to the ATCOR™-SPECL and SIAM™  

pre-classification maps. Three sets of independent metrological/statistically-based quality indicators 
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(QIs) are estimated to investigate the mapping effectiveness (accuracy) of the ATCOR™-SPECL and 

SIAM™ deductive pre-classifiers.  

 A Categorical Variable Pair Similarity Index (CVPSI) ∈ [0, 1]. The CVPSI is a normalized 

estimate of the degree of semantic harmonization (reconciliation) between the test  

and reference class taxonomies which, in general, may not coincide. Vice versa,  

(1 − CVPSI) ∈ [0, 1] is a normalized estimate of the residual of the semantic gap from  

sub-symbolic data to symbolic reference classes filled up, totally or in part, by the 

intermediate vocabulary of test classes. In the present Part 2 of this paper, a novel CVPSI2 

formulation is proposed (refer to the Appendix).  

 A set of symbolic pixel-based thematic quality indicators (TQIs), independent of a set of  

sub-symbolic polygon-based Spatial Quality Indicators (SQIs). These two sets of QIs are 

eligible for coping with the well-known non-injective property of any QI (refer to the Part 1, 

Section 2.5 [20]). Selected symbolic pixel-based TQIs are the overall accuracy, user's and 

producer's accuracies. Selected sub-symbolic object-based SQIs assess oversegmentation, 

undersegmentation and fuzzy edge overlap phenomena. In accordance with the Part 1,  

Section 3 [20], these TQIs and SQIs feature:  

• Statistical validity (consistency [24,25]), i.e., sample estimates are provided with the 

necessary probability foundation to permit generalization from the sample data subset to 

the whole target population being sampled. 

• Statistical significance, i.e., TQIs and SQIs are provided with a degree of uncertainty in 

measurement at a known level of statistical significance, in compliance with the 

principles of statistics and the QA4EO requirements [2]. 

Notably, statistical validity and statistical significance of metrological QIs are almost never 

accomplished in the RS common practice. As a consequence, QIs of existing RS-IUSs remain largely 

unknown in statistical terms. 

In accordance with the CEOS land product accuracy validation criteria [3], the Part 2 selects a test 

set of Earth observation (EO) images comprising three spaceborne/airborne MS images featuring 

different spatial resolutions, spectral resolutions, acquisition conditions and radiometric calibrations of 

digital numbers into top-of-atmosphere reflectance or surface reflectance values. 

Based on collected values of QIs of operativeness (QIOs) proposed in the Part 1 [20], which  

include TQI, SQI and CVPSI estimates, main experimental conclusions of the present Part 2 are 

summarized below.  

(1) Degree of semantic harmonization between output spectral categories (e.g., “vegetation”) and 

target land cover (LC) classes (e.g., “deciduous forest”). In all test images, the CVPSI values 

of the SIAM™ maps at fine and intermediate granularity are superior to those of the 

ATCOR™-SPECL single-granule maps, whose semantic cardinality is smaller (vice versa, 

whose semantic granularity is coarser). Notably, in both the ATCOR™-SPECL and the 

SIAM™ deductive pre-classification first stage, more than 50% of the information gap from 

sensory data to LC classes (see Table 14) is filled up automatically and in near real-time by 
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spectral categories (refer to the Part 1, Figure 1c [20]), irrespective of the mapping accuracy 

estimated via TQIs and SQIs. 

(2) Pre-classification map’s semantic accuracy. Across the three test images and the SIAM™’s 

three semantic granularities, symbolic pixel-based TQIs of the SIAM™ tend to be 

significantly higher (in statistical terms) than the ATCOR™-SPECL’s. In the only image of 

the test set where clouds are present, the ATCOR™-SPECL pre-classifier scores extremely 

low (16.47% ± 5.18%) in the detection of the reference LC class “Cloud/Shadow” (“Cl/Sh”). 

This indicates that the ATCOR™-SPECL implementation of spectral-based decision rules 

capable of mapping clouds and cloud-shadows requires a significant improvement.  

(3) Pre-classification map’s spatial accuracy. In a three-scale segmentation map automatically 

generated from the SIAM™’s three-granule pre-classification map of the very high resolution 

airborne Leica test image, SQI values tend to increase (respectively, decrease) with the 

SIAM™’s semantic cardinality (respectively, semantic granularity). These SQI estimates are 

negatively biased (underestimated) compared to TQI values due to: (i) their inability to model 

many-to-many associations between reference and test classes and (ii) undesired neighboring 

effects pointed out in this work (see Figures 6 and 7). 

(4) Collected QIO values, including the aforementioned CVPSI, TQI and SQI values, reveal that 

the peculiar capability of the two alternative ATCOR™-SPECL and SIAM™ deductive  

pre-classifiers, which is to infer automatically and in near real-time output spectral categories 

from an input single-date MS imagery, does not come at the expense of accuracy, robustness 

to changes in the input data set or scalability, but at the expense of the informative content of 

the output spectral-based semi-concepts, whose semantic meaning is “low”, namely, equal or 

inferior to that of target 4-D LC classes-through-time. 

Stemming from experimental evidence, collected in the Part 2, in support of theoretical 

considerations, presented in the Part 1 [20], the final conclusion of this paper is that the SIAM™ 

software product: (A) outperforms the alternative ATCOR™-SPECL secondary software product and 

(B) appears eligible for use in the pre-attentive vision first stage of a novel generation of hybrid  

RS-IUSs in operating mode (see Part 1, Figure 1c [20]). Alternative to existing state-of-the-art 

Geographic Object-based Image Analysis (GEOBIA, see Part 1, Figure 1b [20]) and iterative 

Geographic Object-Oriented Image Analysis (GEOOIA) systems, whose productivity (respectively, 

timeliness) appears low (respectively, high) to increasing portions of the RS literature [18,19,66], the 

proposed novel generation of hybrid RS-IUSs, where prior knowledge is injected starting from the pre-

attentive vision first stage, is expected to transform large-scale multi-source multi-resolution EO image 

databases into operational, comprehensive and timely knowledge/information products, in compliance 

with the QA4EO objectives [2]. 

Since experimental conclusions of the Part 2 are consistent across mapping algorithms, semantic 

granularities and test data sets in agreement with theory discussed in the Part 1 [20], a subsidiary 

conclusion of this paper is that the adopted probability sampling strategy, originally proposed in a 

related work [32], is proved to be robust and effective for thematic and spatial accuracy assessments of 

either pre-classification first-stage or classification second-stage thematic maps, generated from 

spaceborne/airborne EO images, whose spatial resolution ranges from low to very high.  
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Appendix: Alternative Formulations of the CVPSI Estimated from an OAMTRX Instance 

An original degree of match between a pair of test and reference categorical variables (nominal 

variables, legends, taxonomies) is estimated from an OAMTRX instance, where OAMTRX ⊇ CMTRX, 

based on two formulations identified, respectively, as CVPSI1 ∈ [0,1], originally presented in [32], 

and CVPSI2 ∈ [0,1], proposed hereafter as a relaxed version of CVPSI1, such that relation  

CVPSI2 ≥ CVPSI1 always hold. Notably, symbol CVPSI is adopted to mean the ensemble of CVPSI1 

and CVPSI2 values.  

Vice versa, variable (1 − CVPSI) ∈ [0, 1] is a normalized estimate of the residual of the semantic 

gap from sub-symbolic data to symbolic reference classes filled up, totally or in part, by the 

intermediate test class vocabulary. 

In an OAMTRX instance, like in a CMTRX as a special case, it is typical that columns represent 

the reference classification while the rows indicate the test map to be evaluated [62]. Let us identify as 

TC the cardinality of the test classification taxonomy and as RC the cardinality of the reference sample 

taxonomy. The total number of “correct” elements (cells, entries) in an OAMTRX is identified as CE, 

such that 0 ≤ CE ≤ RC × TC. In addition, symbol “==” is adopted to mean ‘equal to’.  
  



Remote Sens. 2013, 5 5261 

 

A1. Categorical Variable Pair Similarity Index, Version 1, CVPSI1, Where “correct”  

Inter-Vocabulary Reference-Test Class Relations are One-to-One 

The CVPSI1 computation problem is constrained as follows. 

(A1.a)  

,with {0,1} {"correct"entry ( , ), "noncorrect" entry ( , )},, ,1 1
{0, }

TC RC
CE CE CE t r t rt r t rt r
CE RC TC
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= =
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(A1.b)  If (CE == 0) then CVPSI1 = 0. It means that, when no “correct” entry exists, then the 

degree of match between the two categorical variables is zero. 

(A1.c) If (CE == RC×TC) then CVPSI1 → 0. It means that when all table entries are  

considered “correct”, then nothing is meaningful or makes the difference between the two 

categorical variables.  

(A1.d) If  
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i.e., if [(CERC = RC) AND (CETC = TC)], then CVPSI1 = 1. It means that when the reference 

and test map legends “match” each other by means of one-to-one relations exclusively, then 

the OAMTRX is equivalent to a (square and sorted) CMTRX and CVPSI1 is maximum.

 (A1.e) If [not condition(A1.b) AND not condition(A1.c) AND not condition(A1.d)] then  

CVPSI1 ∈ (0,1). 

For example, in a (square and sorted) CMTRX, then CVPSI1 = 1 according to condition (A1.d). In 

practice, CVPSI1 ∈ [0, 1] is a fuzzy degree of similarity between: (i) an OAMTRX whose  

definition requires the selection by a domain expert of the “correct” entries, i.e., “correct” (allowed) 

reference-to-test class relations which are, in general, many-to-many and (ii) an (ideal) CMTRX 

version of an OAMTRX, where allowed reference-to-test class relations are one-to-one exclusively, 

irrespective of the fact that “correct” entries are diagonal or off-diagonal entries.  

To satisfy the set of aforementioned constraints (A1.a) to (A1.e), the following set of original 

equations is proposed. 
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It is trivial to prove that Equation (A3) to Equation (A5) satisfy the aforementioned requirements 

(A1.a) to (A1.d). In the core of the present paper, it is proved that requirement (A1.e) is satisfied too 

(refer to Section 3.1.2). 

A2. Categorical Variable Pair Similarity Index, Version 2, CVPSI2, Where “correct”  

Test-to-Reference Class Relations are Considered One-to-One, While “correct”  

Reference-to-Test Class Relations Can be One-to-Many 

The CVPSI2 computation problem is relaxed with respect to the CVPSI1 formulation proposed in 

the Appendix A.2. In the CVPSI1 formulation, test-to-reference class relations together with  

reference-to-test class relations are “correct” if one-to-one. In its relaxed version CVPSI2, “correct” 

test-to-reference class relations are one-to-one while “correct” reference-to-test class relations can be 

one-to-many, which include relations one-to-one as a special case, see Figure A1. Since CVPSI2 is a 

relaxed version of CVPSI1, then it is always true that CVPSI2 ≥ CVPSI1. 

Figure A1. Entity-relationship conceptual model representation of the test class  

(TC)-reference class (RC) relationship and its cardinalities required in the CVPSI1 and 

CVPSI2 estimates. 

 

To appreciate the conceptual difference between the CVPSI1 and CVPSI2 formulations, let us 

consider the case where the test semantic vocabulary is a specialized version of the reference semantic 

vocabulary, e.g., the test taxonomy = {“Dark-tone bare soil”, “Light-tone bare soil”, “Deciduous 

Forest”, “Evergreen Forest”} and the reference taxonomy = {“Bare soil”, “Forest”}. In an OAMTRX, 

where reference classes are considered as columns and test classes as rows, “correct” entries, 

equivalent to (row, column) pairs, are: (“Dark-tone bare soil” , “Bare soil”), (“Light-tone bare soil”, 

“Bare soil”), (“Deciduous Forest”, “Forest”), (“Evergreen Forest”, “Forest”). In this OAMTRX 
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instance, CVPSI1 is below its maximum, i.e., CVPSI1 ∈ (0, 1), while CVPSI2 is maximum, i.e., 

CVPSI2 = 1. It means that (1 − CVPSI2) = 0, i.e., according to CVPSI2 there is no additional 

(classification) work to pass from the test vocabulary to the reference vocabulary, because the latter is 

an aggregated (simplified, coarser) version of the former. In other words, there is no semantic gap to 

fill up when moving from the test semantic vocabulary to the reference semantic vocabulary (at most, 

there is an aggregation of concepts to perform). 

As another example, let us consider the comparison of a test thematic map, generated from a 

spaceborne optical image by the SIAM™ software product, with a reference LC map (e.g., the U.S. 

National Land Cover Dataset 2006 [59]). SIAM™ generates as output spectral categories, say, 

“vegetation”, equivalent to color names. In this case, the ideal (in terms of discrimination capability) 

test-to-reference class relation is one-to-one, such that one color matches only one reference LC class. 

On the other hand, it is obviously true that a reference LC class can be described by more than one 

color. Hence, in the comparison of a test SIAM™ map with a reference LC map, CVPS2 is better 

suited than CVPS1 to describe the physical relations existing between test spectral categories (colors) 

and reference LC classes.  

The CVPSI2 computation problem is constrained as follows. 

(A2.a) Same as in CVPSI1. 

,with {0,1} {"correct"entry ( , ), "noncorrect" entry ( , )},, ,1 1
{0, }

TC RC
CE CE CE t r t rt r t rt r
CE RC TC

= ∈ = 
= =

∈ ×
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(A2.b) Same as in CVPSI1. If (CE == 0) then CVPSI2 = 0. It means that, when no “correct” entry 

exists, then the degree of match between the two categorical variables is zero. 

(A2.c) Same as in CVPSI1. If (CE == RC×TC) then CVPSI2 → 0. It means that when all table 

entries are considered “correct”, then nothing is meaningful or makes the difference 

between the two categorical variables.  

(A2.d) If  

0, 1,..., 1, 1,...,, , , ,1 1

TC RC
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then CVPSI2 is maximum, i.e., CVPSI2 = 1. 

 (A2.e) If [not condition(A2.b) AND not condition(A2.c) AND not condition(A2.d)] then  

CVPSI2 ∈ (0,1). 

For example, in a (square) CMTRX, then CVPSI2 = 1 according to condition (A2.d). 

To satisfy the set of aforementioned constraints (A2.a) to (A2.e), the following set of original 

equations is proposed. 
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It is trivial to prove that Equation (A8–A10) satisfy the aforementioned requirements (A2.a) to 

(A2.d). In the core of this work, it is proved that requirement (A2.e) is satisfied too (refer to 

Section 3.2.1). 
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