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A B S T R A C T

Satellite-based land-use data sets are providing new opportunities for land-use research. However, care must be
used when working with these datasets due to misclassification error, which causes inconsistent parameter
estimates in typical land-use models. Results from satellite imagery data from the Northern Great Plains indicate
that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification
error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy in-
ference. At the levels of misclassification typical in current satellite imagery datasets (e.g., 35%), ignoring
misclassification can lead to systematically erroneous land-use policies.

1. Introduction

Land use research has focused on developing economic models of
individual landowner’s decisions within a spatially explicit framework
(Irwin and Geoghegan, 2001; Lynch and Geoghegan, 2011). Resulting
empirical models explain the effects of land-use on environmental re-
sources (Lewis, 2010; Rashford et al., 2010; Rashford et al., 2011;
Bhattacharya and Innes, 2013), forest resources (Deininger and Minten,
2002; Munroe et al., 2002; Lewis and Plantinga, 2007; Blackman et al.,
2008), agricultural resources (Lynch and Liu, 2007; Butsic et al., 2011;
Skevas et al., 2016), and urban and regional planning (Irwin and
Bockstael 2002; Wu and Plantinga, 2003; Wu and Cho, 2007; Irwin and
Bockstael 2007; Fragkias and Geoghegan, 2010). Natural resource
managers, in particular, need this spatially explicit framework to ef-
fectively evaluate the social and environmental consequences of alter-
native land-use scenarios (Bockstael, 1996; Untenecker et al., 2016).
The spatial configuration of land-use influences many important in-
dicators of environmental quality, including bird populations (Askins,
2002; Faaborg, 2002), amphibian populations (deMaynadier and
Hunter, 2000), health of riparian systems and estuaries (Gergel et al.,
2002; Hale et al., 2004; Dempsey et al., 2017), human perceptions of
scenic quality (Palmer, 2004), and the extent of urban sprawl (Carrión-
Flores and Irwin, 2004).

Many studies use the US Department of Agriculture’s (USDA)
National Resources Inventory (NRI), which provides information on
land-use choices for over 800,000 sample plots across the US from 1982
to 1997 (at five-year intervals) (e.g., Tanaka and Wu, 2004; Lubowski

et al., 2006; Lewis and Plantinga, 2007; Langpap and Wu, 2008;
Lubowski et al., 2008; Lewis et al., 2009; Rashford et al., 2010; Langpap
and Wu, 2011). The NRI, however, has issues of temporal consistency
and availability.

Alternatively, researchers use aggregate data because of its avail-
ability, geographic coverage, and long temporal scale (e.g., Plantinga
and Irwin, 2006). Most commonly, aggregate data models estimate the
proportion of an area in different land-uses as a function of exogenous
variables expected to influence landowner utility or profits (e.g., Alig
1986; Leitch, 1989; Stavins and Jaffe, 1990; Parks and Murray, 1994;
Parks and Kramer, 1995; Wu and Brorsen, 1995; Wu and Segerson,
1995; Plantinga, 1996; Hardie and Parks, 1997; Plantinga et al., 1999;
Parks et al., 2000; Hardie et al., 2000; Plantinga and Ahn, 2002; Munn
et al., 2002). Since aggregate data models predict aggregate land-use
proportions they are only useful for understanding phenomena that
respond to aggregate-level land cover characteristics. Aggregate data
models cannot predict the consequences of land-use for phenomena
that are sensitive to the spatial pattern of the landscape (Lewis and
Plantinga, 2007).

The increasing availability of land-use data derived from satellite
imagery offers researchers a greater ability to model micro-level land-
use (see Holloway et al., 2007). Several papers use early versions of
satellite products to model land-use (many in developing countries
where other data products are not available). These models examine a
range of land-use issues, including agricultural dynamics (Thompson
and Prokopy, 2009; Hendricks et al., 2014), ecosystem services
(Polasky et al., 2008; Lawler et al., 2014), deforestation (Chomitz and
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Gray, 1996; Nelson and Hellerstein, 1997; Mertens and Lambin, 2000;
Cropper et al., 2001), wildlife habitat loss (Polasky et al., 2005; Shi
et al., 2006), and climate change (Sohl et al., 2012). Recent availability
of satellite-based land-use data sets (i.e., raster datasets), with high
resolution of contiguous spatial coverage over broad spatial extents,
relatively long temporal coverage, and specific land cover classifica-
tions (e.g., rye or winter wheat), are providing new opportunities for
future research (Lark et al., 2017). The National Land Cover Database
(NLCD) and Cropland Data Layer (CDL) in the US, for example, provide
nationwide plot-level observation at high resolution (30m×30m
plots) classifying land into refined classifications from altered to natural
land covers (e.g., urban, corn, and herbaceous grassland).

Though satellite imagery data offers new opportunities for modeling
land-use, it is not without drawbacks. Misclassification error – the
phenomenon of observations of land-use being classified incorrectly
(e.g., Fig. 1) – can cause vagueness (e.g., position of climatic zone
boundaries), ambiguity (e.g., a pixel with more than one class, called a
mixel), positional inaccuracy (i.e., data correspondence to true loca-
tions), logical inconsistency (e.g., a pixel of tundra in an area of crop-
land), and incompleteness (i.e., how well features in the data capture
reality) in the data set (Bolstad, 2008).

Misclassification error does not have a single clear antecedent and is
influenced by many factors. The source of error may stem from sample
size, sample design, model misspecification, inference assumptions,
positional uncertainty, scale misalignment, surrogate or restricted
ground observations, and obfuscation of corrections, assumptions, and
tolerances (Foody, 2002). Misclassification error causes mapped land-
use to differ from true land-use, and although accuracy assessments
attempt to disclose this disconnect often publications fail to even in-
clude this information (Olofsson et al., 2013). Our approach is distinct
from remote sensing model assisted estimation techniques (e.g., Foody
et al., 1992; Canters, 1997; Stehman, 2009; McRoberts, 2011) due to its
construction within an econometric framework and application for
practitioners one step removed from the data generating process. Yet
there are parallel themes that arise in deriving the conditional prob-
abilities of land use consistently and in the fundamental understanding
of the causes and effects of misclassification.

In the context of empirical land-use models, misclassification errors
imply measurement error in the dependent variable of a discrete choice
model. Unlike measurement error in the classic linear regression model
(which only reduces the efficiency of parameter estimates), mis-
classification error leads to inconsistent and inefficient parameter

estimates in discrete choice models (Hausman et al., 1998; Neuhaus,
1999; Hausman, 2001). Although its presence is well known and has
long been considered in the epidemiology literature (Copeland et al.,
1977; Magder and Hughes, 1997; Neuhaus, 1999; Lewis et al., 2012),
misclassification error has largely been ignored in the land-use litera-
ture. Wright and Wimberly (2013), for example, acknowledge mis-
classification and use a raw data correction approach (i.e., spatial
smoothing) to calculate rates of land-use change using satellite imagery
data. They do not, however, apply an empirical model and therefore do
not consider how misclassification errors may propagate (see Kline
et al., 2013).

We expand previous methods of accounting for misclassification
error to make them directly applicable to empirical land-use modeling.
This model specification is functionally equivalent to Hausman et al.
(1998), however the interpretations of specific parameter are adapted
to those commonly used in the land-use literature. We further expand
this specification to account for multi-use land-use models in a more
general model. This specification can allow for different misclassifica-
tion levels across each land-use. We therefore expand the theory and
estimation methods of Hausman et al. (1998) to account for this addi-
tional complexity. Our method is particularly applicable to studies that
use satellite imagery as the basis for an econometric model of the
probability of use in a cross-sectional setting. We demonstrate these
developments using an application of land use in the US Northern Great
Plains.

Our empirical results demonstrate that bias caused by ignoring
misclassification can be substantially significant to affect policy deci-
sions. These models are often used to derive the implications of alter-
native policies (e.g., subsidies) or external shocks (e.g., climate change).
In our example we show that misclassification leads to errors in esti-
mating the effects of alternative policies and external shocks by an
order of magnitude larger than 350%. Simply put the errors constitute
misconstruing areas larger than Yellowstone National Park in the
United States over a total population study area only 13 times larger.

2. Theoretical modeling of land-use

Consider a landowner who faces a decision of what to do with their
land. We will assume this landowner has a utility function and chooses
the land-use that maximizes their utility (see Segerson et al., 2006).
Specifically, the owner of plot i faces a choice among j land-use alter-
natives and receives varying amounts of utility U( )ij from each land-use

Fig. 1. National Agricultural Image Program aerial photo and corresponding Cropland Data Layer satellite rendered image showing the extent of misclassification
error in an irrigation circle (approximately 41°14′21.0″N 105°39′07.7″W) (USDA, 2009a; USDA, 2009b). Each letter corresponds to a specific land cover classifi-
cation; a: Alfalfa; b: Developed/Open Space; c: Evergreen Forest; d: Grass/Pasture; e: Herbaceous Wetlands; f: Non Alfalfa/Other Hay; g: Shrubland.
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choice. Thus the landowner chooses land-use k if and only if
> ∀ ≠U U j kik ij . Since landowner utility is unobservable, we assume

utility is comprised of indirect utility V( )ij and a random error compo-
nent ε( )ij , specifically = +U V εij ij ij. Furthermore, it is more tractable and
useful for empirical analysis to assume that indirect utility is linear in
parameters: = ′V β xij ij, where xij are observable attributes of landowner
utility and β are parameters to be estimated.

Consider a latent variable specification of the multinomial response
model. LetUij be the latent variable, such that the true response is given
by:

= > ∀ ≠y U U j k* I( )ik ik ij (1)

where ⋅I( ) is the indicator function equal to 1 if true and 0 otherwise.
Therefore, the probability that the owner of plot i chooses land-use k is
given by:

= = = > ∀ ≠
= + > + ∀ ≠

P y U U j k
V ε V ε j k

* Pr( * 1) Pr( )
Pr( ).

ik ik ik ij

ik ik ij ij (2)

If we assume the random error component ε( )ij is an i.i.d. error dis-
turbance with a c.d.f. and p.d.f. of F ε( )ij and f ε( )ij respectively, then the
probability can be further expressed as:

∫= = = − < − ∀ ≠P y ε ε V V j k f ε dε* Pr( * 1) I( ) ( )ik ik ij ik ik ij i i (3)

For certain specifications of f , the probability can be expressed in
closed form (i.e., Fisher-Tippett Type I Extreme Value or Gumbel) (see
Train, 2009).

However, what if y*ik is observed with error? Suppose the observed
response is a function of the true response and misclassification error
(i.e., =y g y μ( *, )ik ik ik ) therefore, = ≠ =y yPr( * 1) Pr( 1)ik ik . The literature
on misclassification offers a number of alternative empirical ap-
proaches. The alternative approaches depend on the assumptions of the
nature of misclassification error.

By the law of total probability we can decompose the probability
from the observed response as:

= = = = =
+ = = =

y y y y
y y y

Pr( 1) Pr( 1 * 1)Pr( * 1)
Pr( 1 * 0)Pr( * 0).

ik ik ik ik

ik ik ik (4)

Note that:

∑

= = =

= = = =
≠

y y y

y y y

Pr( 1 * 0)Pr( * 0)

Pr( 1 * 1)Pr( * 1).

ik ik ik

j k
ik ij ij

(5)

Furthermore, consistent with spatial analysis literature, we define
the conditional probabilities as accuracies given by:

= = =α y yPr( 1| * 1)k
k

ik ik (6)

and,

= = =α y yPr( 1 * 1)k
j

ik ij (7)

where the superscript holds the value of conditional probability space.
The conditional probability αk

k can be directly interpreted as accuracy
of the use k observation. Whereas the conditional probability αk

j is the
proportion of use k observations that should be use j observations. Thus,
∑

≠

α
j k

k
j can be interpreted as the total proportion of use k observations

that should be observed as other uses – specifically the error that use k
introduces to all other use observations. Thus we can restate the
probability of observing land-use k in a way that accounts for potential
misclassification errors as:

∑

∑

= = = + =

≡ +
≠

≠

y α y α y

α P α P

Pr( 1) Pr( * 1) Pr( * 1)

* *.

ik k
k

ik
j k

k
j

ij

k
k

ik
j k

k
j

ij
(8)

In the case of no misclassification, =α 1k
k and = ∀ ≠α j k0k

j , and
the true response for the dependent variable is observed (i.e.,

= = =y yPr( * 1) Pr( 1)ik ik ).
Whether the conditional probabilities are known or unknown, the

associated likelihood function has the same form. In a typical (naïve)
estimation procedure the land-use probabilities are estimated along
with the latent accuracy term, which results in attenuated marginal
effects. If the conditional probabilities (accuracies) are robust and the
researcher deems them appropriate for their specific model, they may
be used to directly weight the likelihood function in a standard MLE.
However, even if the conditional probabilities are correct, the weighted
MLE will not necessarily produce consistent standard error estimates
(Hausman and Scott-Morton, 1994). We focus on the MLE approach
with exogenous conditional probabilities (i.e., exogenous to each
other). The likelihood function for a land-use model accounting for
misclassification errors is given by:

∏ ∏ ∑=
⎧
⎨
⎩

⎛

⎝
⎜ +

⎞

⎠
⎟

⎫
⎬
⎭≠

L α α β α P α P( , , ) * * .k
k

k
j

k
i k

k
k

ik
j k

k
j

ij

yik

(9)

Note the accuracies are just parameters that are directly estimable.
The model does require a monotonicity condition for identification,
mainly∑ − <α(1 ) 1

j
j
j . This condition is intuitively appealing since its

violation implies that the observed land-use data does no better (or
systematically does worse) than chance in describing land-use. As
Hausman et al. (1998) note, if this were the case “the project should
probably be abandoned!”

3. Rhetoric and context of accuracy assessments

Spectroradiometers and their classification algorithms have yet to
return data sets with perfect information. Even if they could classify
land-use perfectly they are still limited by spatial, spectral, and tem-
poral resolution. Even with the smallest available tolerances across all
satellites there will be plots straddling land-use borders that change
over time and have subtle within land-use distinctions. Therefore, sa-
tellite imagery datasets provide accuracy assessment matrices. These
aptly named ‘confusion matrices’ provide probabilistic estimates of
accuracy across each land-use classification. Unfortunately, there is no
standard for measuring and reporting attribute accuracy (Foody, 2002).
Accuracy is usually reported as the (expected) difference between da-
tabase values and reality. In the remote sensing literature, attribute
accuracy tables are reported per observation and not per transition.

To derive and interpret conditional probabilities from a confusion
matrix, first consider an abstraction of satellite imagery data where
there are two exclusive and exhaustive land uses, grass and crops. A
typical confusion matrix may look like:

Where A B C D, , , are counts of land-use plots, and + + +A B C D
are the total number of plots on a landscape. Note that there are A plots
observed to be in use 0 (e.g., grass) that are truly in use 0 (e.g., grass),
there are B plots observed to be in use 0 (e.g., grass) that are truly in use
1 (e.g., crops), there are C plots observed to be in use 1 (e.g., crops) that
are truly in use 0 (e.g., grass), and there are D plots observed to be in use
1 (e.g., crops) that are truly in use 1 (e.g., crops) (Table 1).

Therefore, of the +A B plots observed to be in use 0, only A plots
are correctly classified (i.e., user’s accuracy of land-use 0); and of the

+C D plots observed to be in use 1, only D plots are correctly classified
(i.e., user’s accuracy of land-use 1). However, of the +A C plots known
to be in use 0, only A plots are correctly classified (i.e., producer’s ac-
curacy of land-use 0); and of the +B D plots known to be in use 1, only
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D plots are correctly classified (i.e., producer’s accuracy of land-use 1).
Attribute accuracy reports are notoriously confusing when trying to
reconcile producer’s accuracy and user’s accuracy (i.e., known truth
versus truth to be known). To describe these accuracies intuitively can
be difficult, however the real difference is illuminated through their
mathematical construction. See Stehman and Czaplewski (1998) for
further discussion of fundamental principle of accuracy and Olofsson
et al. (2014) for best practice recommendations.

Overall accuracy: +
+ + +

A D
A B C D

= = ∩ = + = ∩ =
= = = = + = = =
= = = = + = = =
= +

P Y Y P Y Y
P Y Y P Y P Y Y P Y
P Y Y P Y P Y Y P Y
a P a P

( * 0 0) ( * 1 1)
( * 0 | 0 ) ( 0) ( * 1 | 1 ) ( 1)
( 0 | * 0) ( * 0) ( 1 | * 1) ( * 1)

* *

i i i i

i i i i i i

i i i i i i

i i0
0

0 1
1

1 (10)

Producer’s accuracy of land-use 0:
+
A

A C

=
= ∩ =

=
= = = =

P Y Y
P Y

P Y Y a
( 0 * 0)

( * 0)
( 0 | * 0)i i

i
i i 0

0

(11)

Producer’s accuracy of land-use 1:
+
D

B D

=
= ∩ =

=
= = = =

P Y Y
P Y

P Y Y a
( 1 * 1)

( * 1)
( 1 | * 1)i i

i
i i 1

1

(12)

Omission error of land-use 0 (i.e., 1 minus Producer’s accuracy):

+
C

A C

=
= ∩ =

=
= = = =

P Y Y
P Y

P Y Y a
( 1 * 0)

( * 0)
( 1 | * 0)i i

i
i i 1

0

(13)

Omission error of land-use 1 (i.e., 1 minus Producer’s accuracy):
+
B

B D

=
= ∩ =

=
= = = =

P Y Y
P Y

P Y Y a
( 0 * 1)

( * 1)
( 0 | * 1)i i

i
i i 0

1

(14)

User’s accuracy of land-use 0: +
A

A B

=
= ∩ =

=
= = =

P Y Y
P Y

P Y Y
( * 0 0)

( 0)
( * 0 | 0 )i i

i
i i (15)

User’s accuracy of land-use 1:
+
D

C D

=
= ∩ =

=
= = =

P Y Y
P Y

P Y Y
( * 1 1)

( 1)
( * 1 | 1 )i i

i
i i (16)

Commission error of land-use 0 (i.e., 1 minus User’s accuracy):
+
B

A B

=
= ∩ =

=
= = =

P Y Y
P Y

P Y Y
( * 1 0)

( 0)
( * 1 | 0 )i i

i
i i (17)

Commission error of land-use 0 (i.e., 1 minus User’s accuracy):
+
C

C D

=
= ∩ =

=
= = =

P Y Y
P Y

P Y Y
( * 0 1)

( 1)
( * 0 | 1 )i i

i
i i (18)

Not all data sets provide accuracy assessments, nor do they provide
the particular level of classification that the researcher is interested in.
Accuracy assessments are a static analysis and typically cannot be rerun
post publication. Spatially heterogeneous errors are not represented
(Foody, 2002). Furthermore, they are only themselves an estimate
using sampling techniques and “ground truthing.” This often means
using existing satellite imagery data to “ground truth” the next gen-
eration of datasets (Wickham et al., 2013). Regardless of its source,

reference data is just as susceptible to the errors of the sample data, and
measuring the agreement of these two data sets does not necessarily
measure what we want to measure: closeness to reality (Foody, 2002).
Our accuracy breakdowns are intended to show more clearly what the
accuracy alphas represent. And, yes, they can be used for MLE weights
but only under specific circumstances (see Hausman and Scott-Morton,
1994). This section shows how the accuracy estimates could be double
checked for consistency, and more to the point, to better define them in
the context of economic land-use research and to develop a consistent
rhetoric for these techniques.

4. Applying misclassification correction techniques

Loss of native land cover to intensive agricultural production is one
of the primary global threats to ecosystem and biodiversity conserva-
tion (Rashford et al., 2013; Armsworth et al., 2004). Temperate grass-
lands, which have the highest ratio of converted to protected area of
any major biome, are perceived to be most at risk (Hoekstra et al.,
2005). Loss of native grasslands to cultivated croplands was historically
extensive and continues worldwide today (e.g., Liu et al., 2006;
Rounsevell et al., 2005; Stephens et al., 2008). Grassland loss decreases
biodiversity (Foley et al., 2005; Green et al., 2005), releases sequestered
carbon (Foley et al., 2005), decreases water quality (Moss, 2008) and
increases soil erosion (Montgomery, 2007).

Despite continuing efforts on the part of government programs (e.g.,
Conservation Reserve Program) and private conservation agents, US
temperate grasslands continue to face high loss rates (Wright and
Wimberly, 2013; Rashford et al., 2010). The Northern Great Plains –
one of the most diverse, contiguous grasslands left on the planet –
provides habitat for many threatened or special conservation status
species, such as the long-billed curlew, piping plover, mountain plover
and greater sage-grouse. The region is also critical for North American
waterfowl, which depend on the region’s mix of grassland and pothole
wetlands for breeding habitat. Much of this vast upland landscape of
native grass has been plowed (Leitch, 1989), resulting in the loss and
fragmentation of habitat, and altered hydrological networks (Bell and
Irwin, 2002). Much of the remaining grassland, particularly in the
Northern Great Plains, is privately owned and used for low-intensity
agriculture (e.g., pasture and rangeland), and is therefore subject to loss
(Fischer et al., 2008).

Given the ecological importance of the Northern Great Plains, it is
essential for policy-makers to understand the drivers of grassland loss.
Empirically modeling grassland loss in the region, however, is chal-
lenging given the land-use data available. Standard datasets of agri-
cultural land-use, such as the Census of Agriculture, only provide
county-level aggregate data and do not explicitly categorize grassland.
Thus, satellite imagery data, with its fine spatial resolution and explicit
land-cover classifications, is the most widely and publically available
source of data for monitoring and modeling grassland loss. Grassland
land-covers in satellite imagery data, however, can suffer from high
rates of misclassification. For example, the 2001 NLCD the pasture/hay
class exhibits a 14% rate of omission error and a 24% rate of com-
mission error and the grassland/herbaceous class exhibits a 37% rate of
omission error and a 17% rate of commission error (Wickham et al.,
2013). Grassland loss in the Northern Great Plains therefore provides an
appropriate and important context for exploring the implications of
misclassification error for empirical land-use modeling.

We develop a binary-use logit model to predict the probability of
grassland and cropland in the North and South Dakota portion of the
Northern Great Plains. We estimate both a naïve model and a corrected
model that accounts for misclassification error. Because the data suffer
from misclassification error, we cannot condition on starting use, the
standard practice in previous land-use change modeling studies
(Lubowski, 2002; Lewis, 2005).

Substituting [6] and [7] into [5] and simplifying with a binary use
scenario of cropland and grassland generates a simple expression for the

Table 1
Attribute accuracy table.

Truth

=Y * 0i =Y * 1i

Observed =Y 0i A B +A B
=Y 1i C D +C D

+A C +B D + + +A B C D
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probability of land-use that accounts for potential misclassification er-
rors:

= = +
= + − −
= − + + −

y α P α P
α P α P

α α α P

Pr( 1) * *
* (1 )(1 *)

1 ( 1) *

ic c
c

ic c
g

ig

c
c

ic g
g

ic

g
g

c
c

g
g

ic (19)

Progressing from previous land-use literature and established logit
specifications (see Rashford et al., 2013; Train, 2009), we define the
probability of observing cropland on plot i as:

= ⎛
⎝ +

⎞
⎠−P

e
1

1ic Vi (20)

whereVi is the indirect utility of land-use on plot i. Subsequently, − P1 ic

is the probability of observing grassland. However, if one suspects
misclassification error, as we do in this application, the probability of
observing cropland on plot i is:

= ⎡
⎣⎢

− + + − ⎛
⎝ +

⎞
⎠

⎤
⎦⎥−P α α α

e
* 1 ( 1) 1

1ic g
g

c
c

g
g

Vi (21)

where αg
g and αc

c are defined as above.
The coefficients for the naïve model are estimated using maximum

likelihood with the following log likelihood function:

∑= + − −LL β β β β y P y P( , , , ) { ln ( ) (1 ) ln (1 )}.
i

ic ic ic ic0 1 2 3
(22)

The corrected model estimates accuracies of land-use observations
along with the parameters of indirect utility by maximizing the fol-
lowing log likelihood function:

∑⎜ ⎟
⎛

⎝

⎞

⎠
= ⎧

⎨⎩

− + + −
+ − + − −

⎫
⎬⎭

LL
α α

β β β β
y α α α P

y α α α P
, ,

, , ,
ln (1 ( 1) )

(1 ) ln ( (1 ) )
.c

c
g
g

i

ic g
g

c
c

g
g

ic

ic g
g

c
c

g
g

ic0 1 2 3

(23)

We specify the indirect utility of choosing cropland as:

= + + +V β β CropRet β CropRet LCC β Dry58i i i i i0 1 2 3 (24)

where CropReti is the net returns to cropland on plot i; LCC58i is a
dummy variable indicating whether plot i is in land capability class 5–8;
Dryi is the dryness index on plot i; and the β’ s are parameters to be
estimated. Land capability classes are an index measure of the lands
ability to support crop production; thus, interacting land capability
class with returns allows returns to be scaled according to plot-level soil
characteristics (Lubowski, 2002). Dryness captures plot-level climate
characteristics. We do not explicitly measure the indirect utility of
choosing grassland for two reasons. First, accurate data on grassland
returns is not readily available (i.e., since grassland is an input to li-
vestock production) and proxies, such as pasture rental rates, are poorly
measured. Second, grassland is a residual land-use – that is, grassland is
‘chosen’ when the land is not suitable for crop production. Thus, the
decision to choose crops is expected to largely explain grassland.

We measure net returns to cropland with five-year lagged area-
weighted average of returns less operating costs in real terms developed
from survey base year 2005 by the Economic Research Service (USDA,
2010a). The dryness index, provided by the Rocky Mountain Research
Station (Crookston and Rehfeldt, 2010), captures spatial variation in
historical average weather conditions. It is calculated as the ratio of
growing season degree days above 5 °C and growing season precipita-
tion. This index has been used to explain crop production decisions in
previous land-use models (see Rashford et al., 2013). Land capability
class is a composite, plot-level index of soil productivity in agriculture,
with LCC1 being most productive and LCC8 being the least (Kellogg,
1961).

We use observations of land-use from the 2009 and 2010 Cropland
Data Layer (CDL) distributed by the National Agricultural Statistical
Service (USDA, 2009b; USDA, 2010b). The CDL is currently the most
comprehensive public dataset for observing land-use in the United

States. This dataset provides a contiguous landscape of spatially refer-
enced 30m×30m plots. Plots may be classified as 1 of 135 different
land-use categories. The strength and emphasis of the CDL is crop-
specific categories. The CDL uses the NLCD 2001 for non-agricultural
uses and internal validation. To focus on grassland conversion to
cropland, we aggregate the CDL into two uses. Specifically, crop land-
use categories (e.g., corn, wheat, etc.) become one cropland category
and grass/pasture, shrubland, NLCD-shrubland, and NLCD-grassland her-
baceous become one grassland category. Any uses outside of these
classifications are omitted. Finally, we draw a sample of 61,851 ob-
servations from plots in North and South Dakota.

We estimate four land-use models in total, a naïve and corrected
specification for data from 2009 and 2010. All parameters are sig-
nificant at the 99% level of confidence in both the naïve and corrected
models unless noted otherwise (Table 2). The signs of the corrected
estimates are consistent with economic theory and a priori expectations.
The cropland returns parameter is positive, indicating that higher
cropland returns increase the utility of cropland, and is less impactful
on lower quality land (i.e., <β 02 ). The dryness index is negative, in-
dicating that an increase in growing season degree-days above 5 °C,
holding precipitation constant, decreases the utility of choosing crop-
land.

The accuracy estimates range from 0.61 to 0.78 for grassland and
0.65 to 0.70 for cropland, indicating that the data suffer from sub-
stantial misclassification error. Compared to the reported accuracies
from the NLCD the parameter estimates are consistent with expected
values. Specifically, we estimate an omission error for grassland of
21.89% in 2009 and 38.71% in 2010 whereas the NLCD reports an
estimated 14% rate of omission error for pasture/hay and 37% rate of
omission error for grassland/herbaceous (the two classes that comprise
the grassland category). We estimate an omission error for cropland of
29.88% in 2009 and 35.00% in 2010 whereas the CDL reports an
average area weighted omission error for cropland of 16.73% in 2009
and 16.22% in 2010.

To focus on the possible policy implications of ignoring mis-
classification error, we present the averages of the predicted prob-
abilities obtained from each of the model specifications (Table 3). There
are some stark and important differences between the two models. The
naïve predicted probabilities are exactly the average frequency of each
land-use observed in the data. Yet we know that these uses contain
misclassification error. In the corrected method the predicted prob-
abilities are free to adjust: they represent the true distribution of land-
use. Because the predicted probabilities in each model must sum to one
the absolute effect of misclassification on the predicted probabilities is
not as clear. Even more relevant to policy decisions is the dispersion of

Table 2
Parameter estimates from four land-use models.

Naïve Corrected

Variable 2009 2010 2009 2010

Intercept 2.7377 1.1706 9.8307 22.4076
(0.0840) (0.0743) (0.6427) (2.8427)

Crop Returns 0.0034 0.0006 0.0282 0.0934
(0.0005) (0.0003) (0.0035) (0.0113)

Crop Returns × LCC58 −0.0082 −0.0046 −0.0259 −0.0639
(0.0002) (0.0001) (0.0016) (0.0068)

Dryness −0.4757 −0.1212 −1.9935 −5.0467
(0.0142) (0.0143) (0.1363) (0.5797)

Accuracy of Crops 0.7012 0.6500
(0.0047) (0.0023)

Accuracy of Grass 0.7811 0.6129
(0.0100) (0.0072)

Note: All coefficient estimates in the four models are statistically significant
except naïve crop returns 2010. All coefficient estimates across the two model
specifications are statistically different from one another above the 99.99%
level of significance.
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coefficient estimates.
Because of the non-linear nature of the logit specification, direct

interpretation of parameter estimates is difficult. However, the cor-
rected estimates are always farther from zero than their naïve coun-
terparts. To provide a more clear interpretation and comparison, we
estimate the average of the marginal effects for each explanatory
variable. The marginal effects demonstrate the consequences of ig-
noring misclassification. In the naïve model, for example, a $1 per acre
increase in crop returns for 2009 increases the probability of cropland
by 0.0003, whereas the corrected model suggests a 0.0014 increase in
the probability of cropland (Table 4). Thus, accounting for mis-
classification implies a marginal effect that is 367% larger than what is
obtained from using the inconsistent estimates from the naïve model.

Note that the 2010 crop returns marginal effect is negative. Thus,
the results from the naïve specification are distorted so much that the
marginal effect has the wrong sign. The trend continues for the mar-
ginal effect of dryness. In the naïve model, a one unit increase in the
dryness index of 2009 decreases the probability of cropland by 0.1058,
where as the corrected model suggests a 0.1776 decrease in the prob-
ability of cropland. Thus, accounting for misclassification implies a
marginal effect that is 68% larger than what is obtained from using the
inconsistent estimates from the naïve model. Finally, a one unit increase
in the dryness index of 2010 decreases the probability of cropland by
0.0282 in the naïve model, whereas the corrected model suggests a 0.14
decrease in the probability of cropland, which is a 396% difference.
However, the more meaningful comparison is between the predicted
effects from the naïve model and the corrected model (Table 5).

By applying the accuracy assessments to the observed acreage we
show that in total 4,315,563 acres are misclassified in expectation.
Then using the observed and corrected acres from the two models we
can predict the relative differences (consequences) between the two
models. We first consider a $10 per acre increase (< 7%) in 2009 crop
returns. There are many scenarios in which the relative returns to
cropland increase and thus increase grassland loss in the Northern Great
Plains. Federal polices, for example, continue to encourage biofuels as
an alternative to traditional fossil fuels (Rashford et al., 2010). Biofuel
production predominantly comes from corn ethanol, which is expected
to bolster the recent high corn prices. Under the assumptions of the
naïve model, we would expect 139,574 more acres of cropland given a
$10/acre increase in crop returns. However, under the corrected model,
we would expect 651,343 more acres of cropland, a difference of
511,769 acres in expectation.

Interpreting the magnitude of changes in dryness index is more
difficult because it is a ratio variable. However the relative differences
across the two model specifications is still enlightening. Consider a one-
unit increase to the dryness index. This change equates to an on average
increase of 30 growing season degree days, or approximately 0.3 °C
increase in average temperature (300 growing season degree day tenths
or 30 growing season degree days averaged over the growing season
days> 5 °C (100 days) is equivalent to an average increase of 0.3 °C of
each growing season degree day that year). Under the assumptions of
the naïve model we would expect 4,922,293 less acres of cropland.
However, under the corrected model we would expect 8,262,755 less
acres of cropland, a difference of 3,340,462 acres. For perspective this
difference is larger than the area Yellowstone National Park in the
United States.

5. Conclusion

The increasing availability of satellite-based land-use datasets –
including datasets with contiguous spatial coverage over large areas,
relatively long temporal coverage, and detailed land cover classifica-
tions – is offering new opportunities for empirically modeling land-use.
Data derived from satellite imagery offers a greater ability to model
micro-level land-use, and thus to understand the drivers of, and predict,
the fine-scale spatial configuration of both altered and natural land-
scapes. Though satellite imagery data offers new opportunities, it also
poses new challenges for empirical modeling. Satellite-based land-use
datasets all suffer from some level of misclassification error. Such
misclassification implies that the dependent variable in a discrete
choice land-use model may be misclassified. Although misclassification,
and more generally measurement error, is found in many datasets, ig-
noring it in discrete choice models results in inconsistent parameter

Table 3
Averages of the predicted probabilities.

Naïve Corrected

Use Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Crops 2009 0.5918 0.1387 0.1965 0.8788 0.7732 0.2938 0.0085 0.9998
Crops 2010 0.6083 0.0749 0.4094 0.7214 0.8412 0.3253 0.0000 0.9999
Grass 2009 0.4082 0.1387 0.1212 0.8035 0.2268 0.2938 0.0002 0.9915
Grass 2010 0.3917 0.0749 0.2786 0.5906 0.1588 0.3253 0.0000 0.9999

Note: All average predicted probabilities across the two model specifications are statistically different from one another above the 99.99% level of significance.

Table 4
Marginal effects for probability of observing cropland.

Naïve Corrected

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Crop Returns 2009 0.0003 0.0008 −0.0012 0.0008 0.0014 0.0017 0.0000 0.0070
Crop Returns 2010 −0.0002 0.0005 −0.0010 0.0001 0.0011 0.0024 0.0000 0.0234
Dryness 2009 −0.1058 0.0085 −0.1189 −0.0507 −0.1776 0.1615 −0.4984 −0.0004
Dryness 2010 −0.0282 0.0012 −0.0303 −0.0244 −0.1400 0.3144 −1.2617 −0.0000

Note: Marginal effects across the two model specifications are statistically different from one another above the 99.99% level of significance.

Table 5
Misclassification realized on the landscape.

Treatment Naïve Corrected Difference

Acres of Grass in 2009 35,188,505 30,872,942 4,315,563
Acres of Crops in 2009 11,336,014 15,651,577 4,315,563
Crop Returns increase by $10 -

Cropland
+139,574 +651,343 511,769

Dryness increase by one unit -
Cropland

−4,922,293 −8,262,755 3,340,462
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estimates (Hausman et al., 1998). The consequences of, and corrections
for, misclassification error are well addressed in the epidemiology lit-
erature (e.g., in the context of health treatment effects); however,
misclassification errors have not been considered in the context of
empirical land-use modeling.

The application in the Northern Great Plains demonstrates the im-
portance of correcting for misclassification errors. We use the Northern
Great Plains for an application because temperate grasslands are at high
risk of conversion to cropland, and such conversion threatens the ha-
bitat of many threatened or special conservation status species.
Moreover, empirically modeling grassland in the region is challenging
because commonly available datasets are too aggregated or do not
explicitly categorize grassland; thus, satellite imagery is potentially the
best source of data to monitor and model grassland. Grassland land-
covers in satellite imagery data, however, suffer from high rates of
misclassification. Our empirical results demonstrate that bias caused by
ignoring misclassification can be substantial and thus could affect
policy inference. Given that land-use models are often used to derive
the implications of alternative policies (e.g., subsidies) or external
shocks (e.g., climate change), our results suggest that ignoring mis-
classification could lead to incorrect inference.

Though this paper demonstrates applicable techniques that correct
land-use models for misclassification, further research is needed. Our
application uses a relatively simple land-use model (i.e., two uses, one
transition period, and a relatively simple specification of indirect uti-
lity). The complexity of the likelihood function that incorporates mis-
classification can pose convergence challenges and thus more complex
models with multiple uses and many transition periods may not con-
verge. Additionally, more thought is needed to interact these error
correction techniques with techniques that rectify other issues of dis-
crete choice land-use change models, such as spatial autocorrelation
and computational complexity. A robust empirical study over many
uses and time periods that attempts to explain and predict land-use
change is needed. The results of our empirical research lack the full
depth of scope to provide these results. Finally, the next step for this
research is adapting techniques that account for endogenous mis-
classification error, relative to plots and across time. This step would
relax the assumption that misclassification errors of land-use are in-
dependent of their geography and occur independently across time.

References

Alig, R.J., 1986. Econometric analysis of the factors influencing forest acreage trends in
the southeast. For. Sci. 32, 119–134.

Armsworth, P.R., Kendall, B.E., Davis, F.W., 2004. An introduction to biodiversity con-
cepts for environmental economists. Resour. Energy Econ. 26, 115–136.

Askins, R.A., 2002. Restoring North America’s Birds. Yale University Press, New
Haven, CT.

Bell, K.P., Irwin, E.G., 2002. Spatially explicit micro-level modeling of land use change at
the rural-urban interface. Agric. Econ. 27, 217–232.

Bhattacharya, H., Innes, R., 2013. Income and the environment in rural India: is there a
poverty trap? Am. J. Agric. Econ. 95 (1), 42–69.

Blackman, A., Albers, H.J., Ávalos-Sartorio, B., Murphy, L.Crooks, 2008. Land cover in a
managed forest ecosystem: Mexican shade coffee. Am. J. Agric. Econ. 90 (1),
216–231.

Bockstael, N.E., 1996. Modeling economics and ecology: the importance of a spatial
perspective. Am. J. Agric. Econ. 78, 1168–1180.

Bolstad, P., 2008. GIS Fundamentals, third ed. Eider Press, White Bear Lake, MN.
Butsic, V., Lewis, D.J., Ludwig, L., 2011. An economic analysis of land development with

endogenous zoning. Land Econ. 87 (3), 412–432.
Canters, F., 1997. Evaluating the uncertainty of area estimates derived from fuzzy land

cover classification. Photogrammetric Engineering Remote Sens. 63 (4), 403–414.
Carrión-Flores, C., Irwin, E.G., 2004. Determinants of residential land-use conversion and

sprawl at the rural-urban fringe. Am. J. Agric. Econ. 86 (4), 889–904.
Chomitz, K.M., Gray, D.A., 1996. Roads, land use, and deforestation: a spatial model

applied to Belize. World Bank Econ. Rev. 10, 487–512.
Copeland, K.T., Checkoway, H., McMichael, A.J., Holbrook, R.H., 1977. Bias due to

misclassification in the estimation of relative risk. Am. J. Epidemiol. 105, 488–495.
Cropper, M., Puri, J., Griffiths, C., 2001. Predicting the location of deforestation: the role

of roads and protected areas in North Thailand. Land Econ. 77 (2), 172–186.
Crookston, N., Rehfeldt, G., 2010. Current Climate Data. Available at. U.S. Forest

Service, Rocky Mountain Research Station, Moscow, Idaho. http://forest.moscowfsl.
wsu.edu.

Deininger, K., Minten, B., 2002. Determinants of deforestation and the economics of
production: an application to Mexico. Am. J. Agric. Econ. 84 (4), 943–960.

deMaynadier, P.G., Hunter, M.L., 2000. Road effects on amphibian movements in a
forested landscape. Nat. Areas J. 20, 56–65.

Dempsey, J.A., Plantinga, A.J., Kline, J.D., Lawler, J.J., Martinuzzi, S., Radeloff, V.C.,
Bigelow, D.P., 2017. Effects of local land-use planning on development and dis-
turbance in riparian areas. Land Use Policy 60, 16–25.

Faaborg, J., 2002. Saving Migrant Birds: Developing Strategies for the Future. University
of Texas Press, Austin, TX.

Fragkias, M., Geoghegan, J., 2010. Commercial and industrial land use change, job de-
centralization and growth controls: a spatially explicit analysis. J. Land Use Sci. 5 (1),
45–66.

Fischer, J., Brosi, B., Daily, G.C., Ehrlich, P.R., Goldman, R., Goldstein, J., Lindenmayer,
D.B., Manning, A.D., Monney, H.A., Pejchar, L., Ranganathan, J., Tallis, H., 2008.
Should agricultural policies encourage land sparing or wildlife-friendly farming?
Front. Ecol. Environ. 6 (7), 380–385.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S.,
Coe, M.T., Daily, G.C., Gibbs, H.K., 2005. Global consequences of land use. Science
309, 570–574.

Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sens.
Environ. 80, 185–201.

Foody, G.M., Campbell, N.A., Trodd, N.M., Wood, T.F., 1992. Derivation and applications
of probabilistic measures of class membership from the maximum-likelihood classi-
fication. Photogramm. Eng. Remote Sens. 58 (9), 1335–1341.

Gergel, S.E., Stanley, E.H., Turner, M.G., Miller, J.R., Melack, J.M., 2002. Landscape
indicators of human impacts to riverine systems. Aquat. Sci. 64 (2), 118–128.

Green, R.E., Cornell, S.J., Scharlemann, J.P.W., Balmford, A., 2005. Farming and the fate
of wild nature. Science 307, 550–555.

Hale, S.S., Paul, J.F., Heltshe, J.F., 2004. Watershed landscape indicators of estuarine
benthic condition. Estuaries 27 (2), 283–295.

Hardie, I.W., Parks, P.J., 1997. Land use with heterogeneous land quality: an application
of an area based model. Am. J. Agric. Econ. 79, 299–310.

Hardie, I., Parks, P., Gottleib, P., Wear, D., 2000. Responsiveness of rural and urban land
uses to land rent determinants in the U.S. South. Land Econ. 76 (4), 659–673.

Hausman, J., 2001. Mismeasured variables in econometric analysis: problems from the
right and problems from the left. J. Econ. Perspect. 15 (4), 57–67.

Hausman, J.A., Abrevaya, J., Scott-Morton, F.M., 1998. Misclassification of the dependent
variable in a discrete-response setting. J. Econometr. 87, 239–269.

Hausman, J.A., Scott-Morton, F.M., 1994. Misclassification of a Dependent variable in a
Discrete Response Setting. MIT Department of Economics Working Paper.

Hendricks, N.P., Smith, A., Sumner, D.A., 2014. Crop supply dynamics and the illusion of
partial adjustment. Am. J. Agric. Econ. 96 (5), 1469–1491.

Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., Roberts, C., 2005. Confronting a biome
crisis: global disparities of habitat loss and protection. Ecol. Lett. 8 (1), 23–29.

Holloway, G., Lacombe, D., LeSage, J.P., 2007. Spatial econometric issues for bio-
econometric and land-use modeling. J. Agric. Econ. 58 (3), 549–588.

Irwin, E.G., Bockstael, N.E., 2002. Interacting agents, spatial externalities and the evo-
lution of residential land use patterns. J. Econ. Geogr. 2, 31–54.

Irwin, E.G., Bockstael, N.E., 2007. The evolution of urban sprawl: evidence of spatial
heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. 104 (52),
20672–20677.

Irwin, E.G., Geoghegan, J., 2001. Theory, data methods: developing spatially explicit
models of land use change. Agric. Ecosyst. Environ. 85, 7–23.

Kellogg, C.E., 1961. Land capability classification. Agricultural Handbook No. 210. Soil
Conservation Service, US Department of Agriculture, Washington D.C, pp. 25.

Kline, K.L., Singh, N., Dale, V.H., 2013. Cultivated hay and fallow/idle cropland confound
analysis of grassland conversion in the western corn belt. Proc. Natl. Acad. Sci. 110
(31), E2863.

Langpap, C., Wu, J.J., 2008. Predicting the effect of land-use policies on wildlife habitat
abundance. Can. J. Agric. Econ. 56, 195–217.

Langpap, C., Wu, J.J., 2011. Potential environmental impacts of increased resilience on
corn-based bioenergy. Environ. Resour. Econ. 49, 147–171.

Lark, T., Mueller, R., Johnson, D., Gibbs, H., 2017. Measuring land-use and land-cover
change using the U.S. Department of Agriculture’s cropland data layer: cautions and
recommendations. Int. J. Appl. Earth Geogr. Geoinf. 62, 224–235.

Lawler, J., Lewis, D., Nelson, E., Plantinga, A., Polasky, S., Withey, J., Helmers, D.,
Martinuzzi, S., Pennington, D., Radeloff, V., 2014. Projected land-use change impacts
on ecosystem services in the United States. Proc. Natl. Acad. Sci. 111 (20),
7492–7497.

Leitch, J.A., 1989. The politicoeconomic overview of prairie potholes. In: Van Der, Vick,
A. (Eds.), Northern Prairie Wetlands. Iowa State University Press, Ames, IA, pp. 2–15.

Lewis, D.J., 2005. Managing the Spatial Configuration of Land: the Economics of Land
Use and Habitat Fragmentation. Ph. D. Dissertation. Oregon State University.

Lewis, D.J., 2010. An economic framework for forecasting land-use and ecosystem
change. Resour. Energy Econ. 32, 98–116.

Lewis, D.J., Plantinga, A.J., 2007. Policies for habitat fragmentation: combining econo-
metrics with GIS-based landscape simulations. Land Econ. 83 (2), 109–127.

Lewis, D.J., Plantinga, A.J., Wu, J.J., 2009. Targeting incentives to reduce habitat frag-
mentation. Am. J. Agric. Econ. 91, 1080–1096.

Lewis, F., Sanchez-vazquez, M.J., Torgensen, P.R., 2012. Associations between covariates
and disease occurrence in the presence of diagnostic error. Epidemiol. Infect. 140,
1515–1524.

Liu, Y., Swinton, S.M., Miller, N.R., 2006. Is site-specific yield response consistent over
time? Does it pay? Am. J. Agric. Econ. 88, 471–483.

Lubowski, R.N., 2002. Determinants of land-use transitions in the United States: economic
analysis of changes among major land-use categories. Ph. D. Dissertation. Harvard

A.M. Sandler, B.S. Rashford Land Use Policy 75 (2018) 530–537

536

http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0005
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0005
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0010
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0010
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0015
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0015
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0020
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0020
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0025
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0025
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0030
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0030
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0030
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0035
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0035
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0040
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0045
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0045
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0050
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0050
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0055
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0055
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0060
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0060
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0065
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0065
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0070
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0070
http://forest.moscowfsl.wsu.edu
http://forest.moscowfsl.wsu.edu
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0080
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0080
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0085
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0085
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0090
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0090
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0090
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0095
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0095
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0100
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0100
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0100
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0105
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0105
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0105
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0105
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0110
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0110
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0110
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0115
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0115
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0120
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0120
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0120
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0125
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0125
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0130
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0130
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0135
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0135
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0140
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0140
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0145
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0145
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0150
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0150
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0155
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0155
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0160
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0160
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0165
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0165
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0170
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0170
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0175
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0175
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0180
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0180
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0185
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0185
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0185
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0190
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0190
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0195
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0195
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0200
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0200
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0200
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0205
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0205
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0210
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0210
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0215
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0215
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0215
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0220
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0220
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0220
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0220
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0225
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0225
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0230
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0230
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0235
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0235
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0240
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0240
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0245
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0245
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0250
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0250
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0250
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0255
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0255
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0260
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0260


University.
Lubowski, R.N., Plantinga, A.J., Stavins, R.N., 2006. Land-use change and carbon sinks:

econometric estimation of the carbon sequestration supply function. J. Environ. Econ.
Manage. 51, 135–152.

Lubowski, R.N., Plantinga, A.J., Stavins, R.N., 2008. What drives land-use change in the
United States? A national analysis of landowner decisions. Land Econ. 84, 529–550.

Lynch, L., Geoghegan, J., 2011. The economics of Land use change: advancing the
frontiers. Agric. Resour. Econ. Rev. 40 (3), iii–viii.

Lynch, L., Liu, X., 2007. Impact of designated preservation areas on rate of preservation
and rate of conversion: preliminary evidence. Am. J. Appl. Econ. 89, 1205–1210.

Magder, L.S., Hughes, J.P., 1997. Logistic regression when the outcome is measured with
uncertainty. Am. J. Epidemiol. 146 (2), 195–203.

McRoberts, R.E., 2011. Satellite image-based maps: scientific inference or pretty pictures?
Remote Sens. Environ. 115, 715–724.

Mertens, B., Lambin, E.F., 2000. Land-cover-change trajectories in southern Cameroon.
Ann. Assoc. Am. Geogr. 90 (3), 467–494.

Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. Proc. Natl. Acad.
Sci. 104, 13268–13272.

Moss, B., 2008. Water pollution by agriculture. Philos. Trans. B 363, 659–666.
Munn, I.A., Barlow, S.A., Evans, D.L., Cleaves, D., 2002. Urbanization’s impact on timber

harvesting in the south central United States. J. Environ. Manage. 64, 65–76.
Munroe, D.K., Southworth, J., Tucker, C.M., 2002. The dynamics of land-cover change in

Western Honduras: exploring spatial and temporal complexity. Agric. Econ. 27 (3),
355–369.

Nelson, G.C., Hellerstein, D., 1997. Do roads cause deforestation? Using satellite images
in econometric analysis of land use. Am. J. Agric. Econ. 79, 80–88.

Neuhaus, J.M., 1999. Bias and efficiency loss due to misclassified responses in binary
regression models. Biometrika 86 (4), 843–855.

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A.,
2014. Good practices for estimating area and assessing accuracy of land change.
Remote Sens. Environ. 148, 42–57.

Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E., 2013. Making better use of
accuracy data in land change studies: estimating accuracy and are quantifying un-
certainty using stratified estimation. Remote Sens. Environ. 129, 122–131.

Palmer, J.F., 2004. Using spatial metrics to predict scenic perception in a changing
landscape: Dennis, Massachusetts. Landsc. Urban Plan. 69, 201–218.

Parks, P.J., Hardie, I.W., Tedder, C.A., Wear, D.N., 2000. Using resource economics to
anticipate forest land use change in the U.S. Mid-Atlantic region. Environ. Monit.
Assess. 63, 175–185.

Parks, P.J., Kramer, R.A., 1995. A policy simulation of the wetlands reserve program. J.
Environ. Econ. Manage. 28, 223–240.

Parks, P.J., Murray, B.C., 1994. Land attributes and land allocation: nonindustrial forest
use in the Pacific Northwest. For. Sci. 40 (3), 558–575.

Plantinga, A.J., 1996. The effect of agricultural policies on land use and environmental
quality. Am. J. Agric. Econ. 78, 1082–1091.

Plantinga, A.J., Ahn, S.E., 2002. Efficient policies for environmental protection: an
econometric analysis of incentives for land conversion and retention. J. Agric Resour.
Econ. 27 (1), 128–145.

Plantinga, A.J., Irwin, E.G., 2006. Overview of empirical methods. In: Bell, K.P., Boyle,
K.J., Rubin, J. (Eds.), Economics of Rural Land-Use Change. Ashgate Publishing
Company, Burlington, VT, pp. 113–134.

Plantinga, A.J., Mauldin, T., Miller, D.J., 1999. An econometric analysis of the costs of
sequestering carbon in forests. Am. J. Agric. Econ. 81, 812–824.

Polasky, S., Nelson, E., Camm, J., Csuti, B., Fackler, P., Lonsdorf, E., Montgomery, C.,
White, D., Arthur, J., Garber-Yonts, B., Haight, R., Kagan, J., Starfield, A., Tobalske,
C., 2008. Where to put things? Spatial land management to sustain biodiversity and
economic returns. Biol. Conserv. 141, 1505–1524.

Polasky, S., Nelson, E., Lonsdorf, E., Fackler, P., Starfield, A., 2005. Conserving species in
a working landscape: land use with biological and economic objectives. Ecol. Appl.
15 (4), 1387–1401.

Rashford, B.S., Albeke, S.E., Lewis, D.J., 2013. Modeling grassland conversion: challenges
of using satellite imagery data. Am. J. Agric. Econ. 95 (2), 404–411.

Rashford, B.S., Bastian, C.T., Cole, J.C., 2011. Agricultural land-use change in prairie

Canada: implications for wetland and waterfowl habitat conservation. Can. J. Agric.
Econ. 59, 185–205.

Rashford, B.S., Walker, J.A., Bastian, C.T., 2010. Economics of grassland conversion to
cropland in the Prairie Pothole Region. Conserv. Biol. 25, 276–284.

Rounsevell, M.D.A., Ewert, F., Reginster, I., Leemans, R., Carter, T.R., 2005. Future sce-
narios of European agricultural land use: II. Projecting changes in cropland and
grassland. Agric. Ecosyst. Environ. 107, 117–135.

Segerson, K., Plantinga, A.J., Irwin, E.G., 2006. Theoretical background. In: Bell, K.P.,
Boyle, K.J., Rubin, J. (Eds.), Economics of Rural Land-Use Change. Ashgate
Publishing Company, Burlington, VT, pp. 79–112.

Shi, H., Laurent, E.J., LeBouton, J., Racevskis, L., Hall, K.R., Donovan, M., Doepker, R.V.,
Walters, M.B., Lupi, F., Liu, J., 2006. Local spatial modeling white-tailed deer dis-
tribution. Ecol. Model. 190, 171–189.

Skevas, T., Hayden, N.J., Swinton, S.M., Lupi, F., 2016. Landowner willingness to supply
marginal land for bioenergy production. Land Use Policy 50, 507–517.

Sohl, T.L., Sleeter, B.M., Sayler, K.L., Bouchard, M.A., Reker, R.R., Bennett, S.L., Sleeter,
R.R., Kanengieter, R.L., Zhu, Z., 2012. Spatially explicit land-use and land-cover
scenarios for the Great Plains of the United States. Agric. Ecosyst. Environ. 135, 1–15.

Stavins, R.N., Jaffe, A.B., 1990. Unintended impacts of public investments on private
decisions: the depletion of forested wetlands. Am. Econ. Rev. 80 (3), 337–352.

Stehman, S.V., 2009. Model-assisted estimation as a unifying framework for estimating
the area of land cover and land-cover change from remote sensing. Remote Sens.
Environ. 113, 2455–2462.

Stehman, S.V., Czaplewski, R.L., 1998. Design and analysis for thematic map accuracy
assessment: fundamental principles. Remote Sens. Environ. 64, 331–344.

Stephens, S.E., Walker, J.A., Blunck, D.R., Jayaraman, A., Naugle, D.E., Ringleman, J.K.,
Smith, A.J., 2008. Predicting risk of habitat conversion in native temperate grass-
lands. Conserv. Biol. 22 (5), 1320–1330.

Tanaka, K., Wu, J.J., 2004. Evaluating the effect of conservation polices on agricultural
land-use: a site-specific modeling approach. Can. J. Agric. Econ. 52, 217–235.

Thompson, A.W., Prokopy, L.Stalker, 2009. Tracking urban sprawl: using spatial data to
inform farmland preservation policy. Land Use Policy 26, 194–202.

Train, K.E., 2009. Discrete Choice Methods With Simulation. Cambridge University Press,
New York, NY.

Untenecker, J., Tiemeyer, B., Freibauer, A., Laggner, A., Braumann, F., Luterbacher, J.,
2016. Fine-grained detection of land use and water table changes on organic soils
over the period 1992-2012 using multiple data sources in the Drömling nature park,
Germany. Land Use Policy 57, 164–178.

USDA, 2010a. Economic research service. Commodity Costs and Returns Data. USDA-
ERS, Washington, DC Accessed at: http://www.ers.usda.gov/data/CostsandReturns.

USDA, 2009a. Farm service agency, aerial photography field office. National Agriculture
Imagery Program [Online]. USDA-FSA, Washington, DC Accessed at: https://gis.
apfo.usda.gov/arcgis/rest/services.

USDA, 2009b. National agricultural statistics service, cropland data layer. Published
Crop-Specific Data Layer [Online]. USDA-NASS, Washington, DC Available at.
http://nassgeodata.gmu.edu/CropScape.

USDA, 2010b. National agricultural statistics service, cropland data layer. Published
Crop-Specific Data Layer [Online]. USDA-NASS, Washington, DC Available at.
http://nassgeodata.gmu.edu/CropScape.

Wickham, J.D., Stehman, S.V., Gass, L., Dewitz, J., Fry, J.A., Wade, T.G., 2013. Accuracy
assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ.
130, 294–304.

Wright, C.K., Wimberly, M.C., 2013. Recent land use change in the western corn belt
threatens grasslands and wetlands. Proc. Natl. Acad. Sci. 110 (10), 4134–4139.

Wu, J.J., Brorsen, B.W., 1995. The impact of government programs and land character-
istics on cropping patterns. Can. J. Agric. Econ. 43, 87–104.

Wu, J.J., Cho, S.H., 2007. The effect of local land use regulations on urban development
in the western United States. Reg. Sci. Urban Econ. 37, 69–86.

Wu, J.J., Plantinga, A.J., 2003. The influence of open space on urban spatial structure. J.
Environ. Econ. Manage. 46, 288–309.

Wu, J.J., Segerson, K., 1995. The impact of policies and land characteristics on potential
groundwater pollution in Wisconsin. Am. J. Agric. Econ. 77, 1033–1047.

A.M. Sandler, B.S. Rashford Land Use Policy 75 (2018) 530–537

537

http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0260
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0265
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0265
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0265
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0270
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0270
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0275
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0275
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0280
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0280
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0285
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0285
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0290
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0290
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0295
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0295
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0300
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0300
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0305
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0310
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0310
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0315
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0315
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0315
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0320
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0320
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0325
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0325
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0330
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0330
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0330
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0335
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0335
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0335
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0340
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0340
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0345
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0345
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0345
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0350
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0350
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0355
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0355
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0360
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0360
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0365
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0365
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0365
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0370
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0370
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0370
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0375
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0375
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0380
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0380
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0380
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0380
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0385
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0385
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0385
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0390
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0390
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0395
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0395
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0395
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0400
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0400
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0405
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0405
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0405
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0410
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0410
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0410
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0415
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0415
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0415
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0420
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0420
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0425
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0425
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0425
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0430
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0430
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0435
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0435
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0435
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0440
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0440
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0445
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0445
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0445
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0450
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0450
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0455
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0455
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0460
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0460
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0465
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0465
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0465
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0465
http://www.ers.usda.gov/data/CostsandReturns
https://gis.apfo.usda.gov/arcgis/rest/services
https://gis.apfo.usda.gov/arcgis/rest/services
http://nassgeodata.gmu.edu/CropScape
http://nassgeodata.gmu.edu/CropScape
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0490
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0490
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0490
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0495
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0495
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0500
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0500
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0505
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0505
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0510
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0510
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0515
http://refhub.elsevier.com/S0264-8377(17)31424-2/sbref0515

	Misclassification error in satellite imagery data: Implications for empirical land-use models
	Introduction
	Theoretical modeling of land-use
	Rhetoric and context of accuracy assessments
	Applying misclassification correction techniques
	Conclusion
	References




