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A B S T R A C T   

The long-term data record (LTDR) from the Advanced Very High-Resolution Radiometer (AVHRR) provides daily 
surface reflectance with global coverage from the 1980s to present day, making it a unique source of information 
for the study of land surface properties and their long-term dynamics. Surface reflectance is a critical input for 
the generation of products such as vegetation indices, albedo, and land cover. Therefore, it is of utmost 
importance to quantify its uncertainties to better understand how they might propagate into downstream 
products. Due to the prolonged length of the surface reflectance LTDR and previous unavailability of a well 
calibrated reference, no comprehensive evaluation of the complete record has been reported so far. Recently, the 
United States Geological Survey (USGS) began production of surface reflectance datasets from the Landsat 4–8 
satellites, which provide a suitable reference against which the LTDR can be compared to. In this study, we 
evaluate the LTDRV5 between 1984 and 2011 using surface reflectance data from the Landsat-5 Thematic 
Mapper (TM5) Collection-1 as a reference. Data from TM5 was obtained from over 740,000 globally distributed 
scenes which gave a representative set of land surface types and atmospheric conditions. Differences due to 
observation geometry were accounted for using the Vermote-Justice-Breon (VJB) Bidirectional Reflectance 
Distribution Function (BRDF) normalization method to adjust the AVHRR surface reflectance to TM5 observation 
conditions; the spectral response differences were minimized using spectral band adjustment factors (SBAFs) 
derived from the Earth Observing One (EO-1) Hyperion atmospherically corrected hyperspectral spectra. The 
performance of the AVHRR record is reported in terms of the accuracy, precision, and uncertainty (APU). Results 
show that the LTDR performance is close or within the combined uncertainty specification of 0.071ρ + 0.0071, 
where ρ is the estimated reflectance.   

1. Introduction 

Satellite remote sensing is an essential source of quantitative infor
mation for the global monitoring and study of land surface properties 
and their long-term dynamics. Long term records from satellite obser
vations allow us to study and better understand extreme events and 
changes in our planet to an extent that would not be possible otherwise 
(Potapov et al., 2015; Skakun et al., 2016; Song et al., 2018a; Zhang, 
2015). Amongst long-term satellite records, the one from the Advanced 
Very High-Resolution Radiometer (AVHRR) on board the NOAA polar- 
orbiting environmental satellites (POES) provides the longest time- 

series of daily global satellite measurements, which starts in the early 
1980 s and continues to the present day. 

The surface reflectance long-term data record (LTDR) from AVHRR is 
an ongoing effort to generate a consistent climate record of atmo
spherically corrected daily observations with global coverage. The LTDR 
is generated using data from two versions of the AVHRR sensor onboard 
seven POES platforms: AVHRR/2, onboard platforms N07, N09, N11, 
and N14 (referred to as pre-KLM); and AVHRR/3, onboard platforms 
N16, N18, and N19 (KLM). Throughout the years, the LTDR team has 
developed a processing chain that includes an accurate geolocation with 
an error lower than one pixel (Franch et al., 2017); the monitoring of 
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sensor degradation using observations of clouds and ocean (Vermote 
and Kaufman, 1995), and desert sites (Vermote and Saleous, 2006a); 
cloud masking from albedo thresholds derived from Moderate Resolu
tion Imaging Spectroradiometer (MODIS) information; atmospheric 
correction based on the Second Simulation of the Satellite signal in the 
Solar Spectrum (6S) radiative transfer code (Vermote et al., 1997); and 
normalization of directional reflectance using the Vermote-Justice- 
Breon (VJB) method (Vermote et al., 2009). The LTDR record has 
been used for studies at both regional and global scales, and for areas 
such as agricultural yield estimation (Franch et al., 2017), agricultural 
drought risk quantification (Skakun et al., 2016), long-term global land 
change mapping (Song et al., 2018a); and the estimation of parameters 
such as albedo (Song et al., 2018), and Leaf Area Index (LAI) and 
Fraction of Photosynthetically Active Radiation (FAPAR) (Claverie 
et al., 2016). 

Quality of the surface reflectance record should be the highest 
possible, and the assessment of its uncertainties is crucial to understand 
the record’s potential and limitations, and how the uncertainties might 
propagate to downstream products. While the surface reflectance LTDR 
has been widely used in the literature, previous studies have focused on 
either evaluating the calibration of top-of-atmosphere (TOA) values 
(Bhatt et al., 2016; Heidinger et al., 2002; Li et al., 2014) or evaluating 
surface reflectance values for only a particular set of POES platforms 
(Franch et al., 2017; Vermote and Kaufman, 1995; Vermote and Saleous, 
2006a). Hence, no comprehensive evaluation of the complete surface 
reflectance record has been carried out so far. Nowadays, data from 
MODIS is routinely used to evaluate the surface reflectance performance 
of the most recent AVHRR sensors (Franch et al., 2017). While MODIS 
provides a well calibrated reference dataset, with daily global coverage, 
a robust atmospheric correction, and uncertainties lower than 0.05ρ +
0.005 (where ρ is the surface reflectance), its data is only available since 
2000 for Terra and 2002 for Aqua, which leaves over 19 years of record 
without a consistent surface reflectance reference. 

In recent years, the United States Geological Survey (USGS) began 
production of surface reflectance products from Landsat 4, 5, 7, and 8 
(Ju et al., 2012; Masek et al., 2006; Vermote et al., 2016), providing a 
long-term 16-day dataset at 30 m spatial resolution (https://www.usgs. 
gov/land-resources/nli/landsat/landsat-collection-1-surface-refle 
ctance). Data from the Landsat-5 Thematic Mapper (TM5) sensor spans a 
period of over 27 years, which covers most of the LTDR record lifetime. 
While it was initially shown that the internal calibration (IC) system of 
TM5 was not particularly stable (Chander and Markham, 2003), the 
bands calibration has been routinely updated based on the detectors 
response to the IC, the continuous observation of pseudo-invariant sites, 
and the cross-calibration with Landsat-7 ETM+ (Chander et al., 2009, 
2004; Chander and Markham, 2003). These efforts have achieved a 
radiometric calibration uncertainty of around 7% for the at-sensor 
radiance (Markham and Helder, 2012). The surface reflectance prod
uct provided by USGS is generated using the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006). 
LEDAPS processing involves the calibration of images using revised 
coefficients and the atmospheric correction based on the 6S radiative 
transfer code. Performance of the LEDAPS TM5 surface reflectance 
product was shown to be better than specification of 0.071ρ + 0.0071 in 
terms of surface reflectance uncertainty (Claverie et al., 2015). This 
record provides a unique opportunity for cross-comparison and evalu
ation of the AVHRR surface reflectance LTDR. 

In this work, we present the first comprehensive evaluation of the 
AVHRR surface reflectance LTDR. For this, we use globally distributed 
LEDAPS TM5 surface reflectance data between 1984 and 2011 as a well- 
calibrated reference. To this extent, we implement an evaluation 
methodology that accounts for directional effects using the VJB method, 
and for spectral differences using spectral adjustment factors derived 
from EO-1/Hyperion hyperspectral data. The AVHRR record perfor
mance is reported in terms of the accuracy, precision, and uncertainty 
metrics (APU) (Vermote and Kotchenova, 2008), which are evaluated in 

terms of their dependence to surface reflectance magnitude, land cover, 
temporal evolution, spatial distribution, and seasonality. 

2. Materials and methods 

2.1. AVHRR surface reflectance 

In this study, we evaluate the AVHRR surface reflectance Long Term 
Data Record (LTDR) V5 (Franch et al., 2017) generated from Global Area 
Coverage AVHRR L1b data. The LTDR spans the period between 1981 to 
the present day and provides daily BRDF–normalized observations at 
spatial resolution of 0.05◦x0.05◦ in the Climate Modeling Grid (CMG). 
The surface reflectance product includes information for 5 spectral 
channels, solar and view zenith angles, relative azimuth angles, and 
quality assessment. For this study, we use surface reflectance from the 
red (0.58–0.68 µm) and near infrared (0.72–1.10 µm) channels, the solar 
zenith, view zenith, and relative azimuth angles, and the quality layer, 
which was used to remove pixels contaminated by clouds or other at
mospheric effects and analyze only those with the highest quality. The 
LTDR V5 surface reflectance products were obtained from https://ltdr. 
modaps.eosdis.nasa.gov. 

2.2. Landsat-5 TM surface reflectance 

Surface reflectance from the Landsat-5 Thematic Mapper sensor 
(TM5) was used as a reference to evaluate the AVHRR record. TM5 ac
quired images between 1984 and 2012, making it the longest operating 
Earth observation satellite. Data from TM5 has a temporal resolution of 
16 days and a spatial resolution of 30 m. We used data from over 
740,000 scenes of surface reflectance generated by LEDAPS (Masek 
et al., 2006) from terrain corrected L1TP top-of-atmosphere products 
(Collection-1, Tier-1). The spatial distribution of scenes is shown in 
Fig. 1, and the temporal distribution of scenes is shown in Fig. 2. The 
method for scene selection is explained on Section 3.1. For this study, we 
use surface reflectance from the red (0.63–0.69 µm) and near infrared 
(0.76–0.90 µm) channels, and quality information from the pixel qual
ity, radiometric saturation, and atmospheric opacity layers. Evaluation 
of the TM5 LEDAPS surface reflectance found that it performed better 
than 0.071ρ + 0.0071 (Claverie et al., 2015). The TM-5 Collection-1 
Tier-1 surface reflectance products were downloaded from Google Earth 
Engine (https://developers.google.com/earth-engine/datasets/catalog/ 
LANDSAT_LT05_C01_T1_SR). 

2.3. Landsat-5 TM per-pixel angles 

The TM5 surface reflectance product metadata provides information 
on the sun elevation and azimuth angles for the center of the scene but 
gives no information on the observation zenith and azimuth angles. With 
the purpose of having a better description of the solar and observation 
geometric characteristics of each scene, we computed the per-pixel solar 
zenith, solar azimuth, view zenith, and view azimuth angles using rou
tines made available by USGS (https://www.usgs.gov/land-resources/ 
nli/landsat/solar-illumination-and-sensor-viewing-angle-coefficient-fil 
es). These routines read an angle coefficient file unique to each scene 
and processes it using the Landsat Image Assessment System Geometric 
Libraries (Lee et al., 2004). 

2.4. Hyperion surface reflectance spectra 

In this study, spectral band adjustment factors (SBAF) between 
AVHRR and TM5 were derived from a set of more than 100,000 
hyperspectral surface reflectance spectra acquired by the Hyperion (H0) 
spectrometer onboard the Earth Observer-1 (EO-1) satellite. Hyperion is 
a hyperspectral imager that acquires data from 198 calibrated bands in 
the range of 400 to 2500 nm with a ~ 10 nm spectral resolution and 30 
m spatial resolution (Pearlman et al., 2003). 
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For the purpose of deriving SBAFs over a wide range of conditions, 
data from two readily available surface reflectance data sets collected 
over Australia between 2001 and 2010 (Broomhall, 2012) and the 
Amazon rainforest between 2002 and 2005 (Chambers, 2012) were 
used. In total, 152 H0 granules were included for the derivation of SBAF, 
with most of the data coming from the Australian dataset (133 granules 
versus 19 from the Amazon dataset). The spectra were sampled from the 
middle of the images, in the center of the swath. Although the spectra 
came from surface reflectance products, still some of them had to be 
manually removed as they showed traces of water vapor absorption 
(evidenced by plotting the spectra and observing the 940 nm band), 
were noisy, or did not report values. After filtering, the number of H0 
spectra considered from each dataset was 54,333 from Australia, and 
53,677 from the Amazon. 

2.5. Relative spectral responses 

Relative spectral responses (RSR) from AVHRR and TM5 were used 
to spectrally convolve the H0 surface reflectance spectra and derive 
spectral adjustment factors. Fig. 3 shows the RSR for each AVHRR sensor 
considered (N07 to N19), and for TM5. The RSR were obtained from htt 
ps://cloudsway2.larc.nasa.gov. 

2.6. MODIS land cover data 

To analyze our results by land cover types we followed the Interna
tional Geosphere-Biosphere Program (IGBP) classification included on 

the MODIS MCD12C1 product (Strahler et al., 1999). The MCD12C1 
product provides yearly global land cover information in the CMG grid 
from 2001 to present year. To reduce possible misclassifications on years 
before the MODIS era, we generated a single classification map from all 
available years by selecting only the pixels that remained constant 
during the complete period. The original IGBP classes were then 
simplified following an approach similar to (Pérez-Hoyos et al., 2012). 

Fig. 1. Global distribution of Landsat-5 TM scenes used for evaluation.  

Fig. 2. Number of matching of Landsat-5 TM scenes per year.  

Fig. 3. AVHRR and Landsat5-TM Relative Spectral Responses.  
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Water areas were excluded from the analysis, and urban, snow, and 
wetland classes were removed because they had low pixel counts or 
were not present at all. The class reclassification scheme is showed in 
Table 1, and the global distribution of classes is shown in Fig. 4. 

3. Methods 

3.1. Selection of reference Landsat-5 TM dataset 

The Landsat-5 scenes used as reference for this study were selected 
with the objective of maintaining a high spatial and temporal repre
sentativeness. This was achieved in two steps: First, we generated a 
global 5◦ latitude-longitude uniform grid of points and selected all 
Landsat-5 scenes that intersected a point for the complete period of 
study. Second, for the first and last year of each POES satellite, we 
selected all globally available scenes. In both cases, we discarded the 
scenes that had more than 60% of cloud cover over land. This process 
generated a database of more than 740,000 globally distributed scenes 
(Figs. 1 and 2). Finally, for all remaining scenes we downloaded a 
120kmx120km subset located at the center of each image. Scene selec
tion, sub-setting, and download was done through Google Earth En
gine’s API for python. Due to the large number of scenes, we parallelized 
any further processing using GNU Parallel (Tange, 2011). 

3.2. Spatial aggregation of Landsat 5 TM surface reflectance 

The first step in the evaluation was to aggregate the 30 m TM5 
surface reflectance pixels to the scale of the AVHRR climate modeling 
grid (CMG) of 0.05◦x0.05◦. For this, we first selected the valid TM5 
pixels following the criteria proposed by (Claverie et al., 2015): clear 
land pixels (with no cloud, cloud-shadow, water, or snow), that show no 
saturation, and with an atmospheric opacity lower than 0.3 (clear: <
0.1; average: 0.1 > 0.3; cloudy: > 0.3). Once the valid pixels were 
selected, we aggregated them to CMG scale using an averaging filter. 
Finally, we discarded all aggregated pixels generated from less than 
100% valid TM5 pixels. 

3.3. Geometric adjustment of AVHRR surface reflectance 

The AVHRR LTDR product is originally normalized to a sun zenith 
angle (θs) of 45◦; view zenith angle (θv) of 0◦; and relative azimuth angle 
(φ) of 0◦. To analyze the impact of BRDF on the LTDR performance, we 
started by undoing the current normalization in order to have a baseline 
dataset with no geometric or spectral adjustment whatsoever. We refer 
to this dataset as “No adjustment” in the rest of the manuscript. It is 
important to remark that comparing reflectance data from different 
sensors without accounting for BRDF effects should be avoided, as 
different geometric configurations can produce different errors that 
depend on both sensors sun-view geometries and on the observed sur
face characteristics. 

We then used the VJB method (Vermote et al., 2009) to account for 
observation geometry differences between AVHRR and Landsat-5, and 

adjust the AVHRR surface reflectance to the corresponding Landsat-5 
sun and view angles. The surface reflectance (ρ) for a certain geo
metric configuration (Θ) can be expressed as: 

ρ(Θ) = kiso + kvolFvol(Θ)+ kgeoFgeo(Θ) (1) 

where Θ represents the observation conditions of solar zenith angle 
(θs), view zenith angle (θv), and relative azimuth angle between sun and 
sensor (φ); Fgeo and Fvol are the geometric and volumetric scattering 
components that characterize the shape of the bidirectional reflectance 
distribution function (BRDF) (Maignan et al., 2004; Roujean et al., 
1992); and kiso, kvol, and kgeo are isotropic, volumetric, and geometric 
kernels. It is possible to rewrite the model using variables V =

kvol
kiso 

and 

R =
kgeo
kiso 

proposed by (Vermote et al., 2009): 

ρ(Θ) = kiso(1 + VFvol(Θ) + RFgeo(Θ)) (2) 

Both V and R can be derived as a function of the Normalized Dif
ference Vegetation Index (NDVI) (Franch et al., 2014b; Vermote et al., 
2009). If we assume no change in the surface between two observations 
(A, B) with different geometric configurations, we can express this 
relationship as: 

ρ(ΘB) = ρ(ΘA)
(1 + VFvol(ΘB) + RFgeo(ΘB))

(1 + VFvol(ΘA) + RFgeo(ΘA))
(3) 

Following this relationship, we adjusted the same-day AVHRR sur
face reflectance to the corresponding TM5 observation geometry as: 

ρAVHRR(ΘTM5) = ρAVHRR(ΘAVHRR)

(
1 + VFvol(ΘTM5) + RFgeo(ΘTM5)

)

(
1 + VFvol(ΘAVHRR) + RFgeo(ΘAVHRR)

)

(4) 

For this study, the AVHRR angles were obtained from the LTDR 
product, and the TM5 angles were computed as described in Section 2.3. 
The V and R parameters were obtained from a global database generated 
by (Vermote et al., 2009) from MODIS data. The matter of whether to 
use VJB parameters derived from MODIS or from AVHRR to normalize 
the BRDF effects of AVHRR surface reflectance was analyzed by (Vil
laescusa-Nadal et al., 2019b), who found that VJB parameters derived 
from MODIS performed 3% (Red) to 5% (NIR) better than ones derived 
from AVHRR itself. 

3.4. Spectral adjustment of AVHRR surface reflectance 

Relative spectral responses (RSR) determine how a continuous 
spectrum from the surface is recorded on a sensor discrete band. Thus, 
differences in RSR between AVHRR and TM5 can affect the results of the 
cross-comparison, and a spectral adjustment should be applied to miti
gate this (Chander et al., 2013). Amongst spectral adjustment methods 
the statistical based ones are the most common (Villaescusa-Nadal et al., 
2019a). These methods consist in deriving statistical relationships be
tween two analogous bands using radiative transfer simulations (Li 
et al., 2014; Van Leeuwen et al., 2006), remotely sensed data (Li et al., 
2014; Skakun et al., 2018), or hyperspectral spectra convolutions 
(Doelling et al., 2012; Miura et al., 2006). For this study, we derived the 
spectral adjustment factors using the latter method. We first extracted 
over 100,000 H0 atmospherically corrected reflectance spectra from two 
available datasets (more information is given in Section 2.4). Because 
the spectral mixture inside an AVHRR CMG pixel (~5600 m) is typically 
more diverse than that of a Hyperion pixel (30 m), we followed the 
approach proposed by (Villaescusa-Nadal et al., 2019a), and simulated a 
dataset of 500,000 surface reflectance spectra from the linear combi
nation of up to three independent H0 spectra. This provided a spectra 
database more representative of the CMG pixels scale. 

The generated spectra were convolved with each sensor RSR as 
shown in Eq. (5), where λ represents the Red or NIR band. 

Table 1 
Reclassification of IGBP land cover classes.  

Abbreviation New Class Name Original IGBP Classes 

NLF Needleleaf Forest Evergreen Needleleaf Forest, Deciduous 
Needleleaf Forest 

BLF Broadleaf Forest Evergreen Broadleaf Forest, Deciduous 
Broadleaf Forest 

SSM Shrublands, Savannas, 
Mixed Forest 

Open Shrubland, Closed Shrubland, 
Savannas, Woody Savannas, Mixed 
Forest 

CGL Croplands and 
Grasslands 

Croplands, Grasslands, Cropland Natural 
Vegetation Mosaic 

BRN Bare Areas Barren  
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ρλ =

∫
ρλRSRλdλ∫
RSRλdλ

(5) 

The convolved values were used to derive spectral band adjustment 
factors (SBAF) for each TM5/AVHRR pair as: 

SBAFλ =
ρλ,TM5

ρλ,AVHRR
(6) 

We then tested several spectral adjustment models (Villaescusa- 
Nadal et al., 2019a) and found that the best fit was obtained by fitting 
the SBAFs to the quadratic NDVI: 

SBAFλ = aλ + bλ*NDVIAVHRR + cλ*NDVIAVHRR
2 (7) 

Finally, we used the derived coefficients to spectrally adjust the 
AVHRR to TM5-like values. 

ρλ,TM5 = ρλ,AVHRR*SBAFλ (8)  

3.5. Evaluation of surface reflectance 

For the evaluation we assumed no daily variation of the surfaces and 
relied on same day AVHRR and TM5 acquisitions. We only considered 
AVHRR observations with a sun zenith angle smaller than 75◦ and view 
zenith angle smaller than 45◦. Finally, we used the Local Outlier Factor 
method to remove any remaining outliers (Breunig et al., 2000). We 
evaluate the differences between AVHRR and TM5 using three statistical 
metrics designed to quantify the accuracy, precision, and uncertainty 
(APU). 

The accuracy (A) represents the mean bias of the estimates versus the 
reference (εi): 

Accuracy (A) =
∑n

i=1εi

N
(9) 

The precision (P) represents the repeatability of the estimates cor
rected for the mean bias: 

Precision (P) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(εi− A)2

√

(10) 

The uncertainty (U) represents the actual statistical deviation 
including the mean bias: 

Uncertainty (U) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
εi

2

√

(11) 

To provide a better perspective of each band performance, it is 
helpful to show the uncertainty relative to the average reference value 
(m). The relative uncertainty (rU) is then computed as: 

Relative Uncertainty (rU) =
U
m

(12) 

In this paper, we refer to the notion of A, P, and U defined in (Ver
mote and Kotchenova, 2008). Thus, higher values of A, P, and U reflect 
higher discrepancies between both datasets and lower values reflect a 
better agreement. 

To assess the evaluation results, we compare the uncertainty values 
against a certain specification (S). For surface reflectance products this 
specification is based on a sensitivity analysis of the atmospheric 
correction method, which for both AVHRR LTDR and TM-5 LEDAPS is 
based on the 6S model and has been previously found to be 
0.05ρ+0.005 (where ρ is the surface reflectance magnitude) (Vermote 
and Kotchenova, 2008; Vermote and Saleous, 2006b). Because in this 
study we evaluate AVHRR using TM-5 as a reference, the evaluation 
specification is then defined as the quadratic sum of each sensor’s 
specification, which for this case is 0.071ρ + 0.0071. This approach has 
been adopted by other surface reflectance evaluation and intercom
parison studies (Claverie et al., 2015; Skakun et al., 2018). 

4. Results 

In this section we present the results from the AVHRR evaluation. 
First, we show the impact of the BRDF and spectral adjustment on the 
comparison between AVHRR and TM5 surface reflectance (Section 4.1); 
we then show the evaluation results in terms of the surface reflectance 
magnitude (Section 4.2), temporal evolution (Section 4.3), spatial dis
tribution (Section 4.4), seasonal variation (Section 4.5), and land cover 
(Section 4.6). Finally we show the relationship between the Red and NIR 

Fig. 4. International Geosphere-Biosphere Program (IGBP) land cover classification from MCD12C1 product. Labels were simplified according to Table 1.  
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bands relative errors (Section 4.7). 

4.1. Impact of geometric and spectral adjustment 

We first analyzed the impact of the geometric and spectral adjust
ment on the accuracy, precision, and uncertainty. Fig. 5 shows the 
comparison between AVHRR and TM5 surface reflectance for four 
adjustment levels: No Adjustment, only BRDF adjustment, only spectral 
adjustment, and both BRDF and spectral adjustments. 

The BRDF adjustment improved the results of all metrics for both 
bands. In particular, the improvements were more evident on the Pre
cision metric, which represents the scattering of the errors between 
AVHRR and TM5 and is mainly affected by differences in their sun-view 
geometry. The accuracy metric also showed improvements with BRDF 
correction but were not as consistent across all sensors. When the 
spectral adjustment was applied to the not-BRDF adjusted data, the re
sults tended to show worse agreement between AVHRR and TM5, with 
only minor improvements in the best of cases. In general, the best results 
for accuracy, precision and uncertainty were achieved when both ad
justments were applied to the AVHRR data. 

For all cases, the Red band showed lower uncertainty values than the 
NIR. However, because the surface reflectance magnitudes on the NIR 
are usually higher, its relative uncertainties were lower. Table 2 sum
marizes the relative uncertainty results for the case with no adjustment 
and with both BRDF and spectral adjustments. 

4.2. Performance of LTDR in terms of reflectance magnitude 

Performance of surface reflectance products varies with the reflec
tance magnitude of the measured target. Here we present this depen
dence using APU graphs (Vermote and Kotchenova, 2008), which 
represent the accuracy, precision, and uncertainty for a range of refer
ence reflectance values. Fig. 6 shows APU graphs of the evaluation for 
each sensor and band using both the geometric and spectral adjust
ments. For most sensor-band combinations, the uncertainty increased 
with surface reflectance magnitude but remained under the combined 
specification (0.071ρ + 0.0071). For the Red band, average values 
ranged between − 0.001 to 0.005 for the accuracy, 0.012 to 0.019 for the 
precision, and 0.014 to 0.020 for the uncertainty. In the case of the NIR 
band, the average values ranged between –0.008 and 0.014 for the ac
curacy, 0.019 to 0.027 for the precision, and 0.020 to 0.028 for the 
uncertainty. Overall, data from KLM (N16 to N19) sensors showed better 
performance than pre-KLM ones (N07 to N14). 

4.3. Temporal evolution of LTDR performance 

Performance of a satellite data record can change in time, as changes 

in platform orbit, sensor degradation, and data calibration can affect the 
quality of top-of-atmosphere data. Moreover, performance of the at
mospheric correction process depends on the quality of available 
ancillary data used to characterize atmospheric conditions. In this re
gard, it is important to evaluate how the performance of the AVHRR 
LTDR changes with time. Fig. 7 shows the temporal evolution of the APU 
metrics during the 1984–2011 study period. Yearly results are shown for 
each sensor-band combination for the geometrical and spectrally 
adjusted AVHRR data. Accuracies showed a generally consistent 
behavior for each independent sensor, i.e., in most cases a particular 
AVHRR sensor showed either negative or positive bias with respect to 
TM5. One exception was N11 NIR band, which exhibited variations in 
the bias direction during its lifetime and an opposite bias behavior both 
when transitioning from its predecessor (N11) and to its successor 
(N14). In terms of precision, the pre-KLM sensors (N07-N014) showed 
an increasing trend of the P metric during their lifetimes that was pre
sent in both bands. This was not the case for the KLM sensors (N16-N19) 
which showed a more stable temporal behavior. 

4.4. Spatial distribution of bias and relative uncertainty 

Performance of the LTDR is not spatially uniform. Two metrics 
helpful to represent this are the accuracy, which shows the mean bias of 
AVHRR with respect to TM5; and the relative uncertainty, which gives 
context to the uncertainty metric in relation to the actual average 
reflectance of a particular site. We display these metrics in 2.5◦ latitude 
and longitude bins that provide enough data to compute the statistical 
metrics. For each bin, the metrics were computed from all included CMG 
pixels. Wider spatial coverage in the results of newer AVHRR sensors is 
due to a larger number of TM5 scenes available and is not related with 
AVHRR data availability. 

Accuracy results showed lower biases for the Red than for the NIR 
band (Fig. 8). The Red band accuracy values for 95% of bins varied 
within − 0.028 to 0.026 for N07, − 0.015 to 0.018 for N09, − 0.021 to 
0.013 for N11, − 0.012 to 0.014 for N14, − 0.008 to 0.012 for N16, 
− 0.005 to 0.015 for N18, and − 0.003 to 0.015 for N19. For the NIR 
band, accuracy values for 95% of the bins varied within − 0.040 to 0.017 
for N07, − 0.025 to 0.025 for N09, − 0.026 to 0.014 for N11, − 0.008 to 
0.034 for N14, − 0.008 to 0.023 for N16, − 0.006 to 0.022 for N18, and 

Fig. 5. Impact of the geometrical and spectral adjustments on the accuracy (A), precision (P), and uncertainty (U). Results are shown for the Red (top row) and NIR 
(bottom row) bands. A “-” sign above the accuracy bars indicates negative values. Lower values show better agreement between AVHRR and Landsat-5 TM. 

Table 2 
Relative uncertainty before adjustment and after BRDF and spectral adjustment.  

Band/Adjustment N07 N09 N11 N14 N16 N18 N19 

Red/No Adjustment 23% 22% 19% 18% 18% 17% 17% 
Red/BRDF þ Spectral 14% 13% 11% 11% 10% 12% 13% 
NIR/No Adjustment 20% 21% 17% 20% 17% 16% 14% 
NIR/BRDF þ Spectral 10% 10% 9% 10% 9% 10% 8%  

A. Santamaria-Artigas et al.                                                                                                                                                                                                                  



International Journal of Applied Earth Observations and Geoinformation 98 (2021) 102317

7

–0.001 to 0.018 for N19. There is a change in the bias direction and 
magnitude (sign of the accuracy value) on the NIR band when tran
sitioning from N11 to N14 which is especially noticeable on Northern 

Africa and Western Asia. 
The spatial distribution of relative uncertainties was generally 

consistent between all sensors (Fig. 9). The highest relative uncertainties 

Fig. 6. Accuracy (A), Precision (P), and Uncertainty (U) of AVHRR surface reflectance evaluation. Metrics are computed on bins of 0.02 reflectance units and the 
overall value is given in the top of each subplot. The histogram of values is displayed in black (right axis). Circles on the accuracy line represent negative values. The 
magenta line represents the specification of 0.071ρ + 0.0071 from the TM5 product. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Temporal evolution of the Accuracy, Precision, and Uncertainty. A “-” sign above the accuracy bar represents negative values. The number of CMG pixels (in 
thousands) is shown at the top. 
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Fig. 8. Accuracy maps for AVHRR LTDR Red and NIR bands. Values closer to 0 represent better performance. The values were computed in 2.5◦ (latitude and 
longitude) bins considering all corresponding CMG pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Fig. 9. Relative uncertainty maps for AVHRR LTDR Red and NIR bands. Values closer to 0 represent better performance. The values were computed in 2.5◦ (latitude 
and longitude) bins considering all corresponding CMG pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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were observed over high latitudes and over tropical regions. In partic
ular, the largest values were observed over the Amazon forest, where the 
density of observation is low due to frequent cloud cover. The Red band 
showed worse performance than the NIR. When considering 95% of the 
bins, the global relative uncertainty average values for the Red band 
were (15 ± 6)% for N07, (14 ± 6)% for N09, (13 ± 4)% for N11, (13 ±
4)% for N14, (14 ± 6)% for N16, (16 ± 6)% for N18, and (15 ± 6)% for 
N19. In the NIR band, the values were (10 ± 3)% for N07, (10 ± 2)% for 
N09, (9 ± 2)% for N11, (10 ± 2)% for N14, (9 ± 2)% for N16, (9 ± 2)% 
for N18, and (8 ± 2)% for N19. On the next sections, we analyze these 
results in terms of seasonality and land cover class. 

4.5. Seasonal variation of LTDR bias and relative uncertainty 

The seasonal variation of the Accuracy and Relative Uncertainty are 
shown in Fig. 10. The metrics were first computed per pixel, and then 
aggregated by season and analyzed for the Northern (NH) and Southern 
(SH) hemispheres separately. Seasons correspond to December-January- 
February (DJF), March-April-May (MAM), June-July-August (JJA), and 
September-October-November (SON). Only pixels with more than 30 
valid observations were considered in the analysis. The number of pixels 
per season, hemisphere, and satellite is shown in Table 3. 

The number of pixels with more than 30 observations is, in average, 
around 4 times larger on the Northern hemisphere than in the Southern 
hemisphere, which is likely due to distribution of land bodies as well as 
TM5 data availability. On both hemispheres, the JJA season showed the 
highest number of observations available. 

Average Red band accuracies ranged between − 0.013 ± 0.015 (N07 
in DJF) to 0.007 ± 0.006 (N18 in JJA) on the northern hemisphere, and 

between − 0.024 ± 0.017 (N07 in MAM) to 0.019 ± 0.009 (N07 in JJA) 
on the southern hemisphere. Results for the NIR band showed average 
accuracies that ranged between − 0.021 ± 0.014 (N07 in DJF) to 0.015 
± 0.012 (N14 in JJA) on the northern hemisphere, and between − 0.024 
± 0.017 (N07 in MAM) to 0.019 ± 0.009 (N07 in JJA) on the southern 
hemisphere. For most cases, the spread of values was generally similar 
between the Red and NIR bands. In terms of relative uncertainties, 
average values for the Red band ranged between (10 ± 5)% (N16 in DJF) 
to (20 ± 8)% (N18 in JJA) on the northern hemisphere, and between 
(10 ± 5)% (N11 in JJA) to (37 ± 13)% (N07 in MAM) in the southern 
hemisphere. In the case of the NIR band, average values ranged between 
(8 ± 2)% (N19 in DJF) to (11 ± 4)% (N07 in DJF) on the northern 
hemisphere, and between (7 ± 2)% (N11 in JJA) to (13 ± 6)% (N07 in 
MAM) in the southern hemisphere. 

4.6. Accuracy and relative uncertainty analysis by land cover 

Accuracy and relative uncertainty aggregated by land cover class are 
shown in Fig. 11. The land cover classes analyzed correspond to the ones 
shown in Table 1. The metrics were first computed per pixel, and then 
aggregated by land cover class. Only pixels with more than 30 valid 
observations were considered for the analysis. The number of pixels per 
land cover class for each POES satellite is shown in Table 4. 

Average accuracy values for the Red and NIR bands showed little 
variation between sensors and land cover classes. Values ranged be
tween − 0.016 ± 0.013 (N07 on BRN) to 0.012 ± 0.005 (N18 on NLF) for 
the Red band, and between − 0.014 ± 0.015 (N07 on BRN) to 0.02 ±
0.019 (N14 on NLF) for the NIR band. The newer sensors generally 
showed less variability within the same land cover. Overall, the largest 

Fig. 10. Seasonal variation of accuracy and relative uncertainty for Red and NIR bands on the northern (top) and southern (bottom) hemispheres. Boxplot notches 
represent the median confidence interval. Green triangles represent the mean. Values outside the 2.5th and 97.5th percentiles are plotted individually outside the 
boxplot whiskers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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spread of values was shown by the BRN class. In terms of relative un
certainties, results showed that for the Red band the largest un
certainties occurred on the Forest classes, which ranged between (19 ±
9)% (N14 on BLF) to (34 ± 14)% (N18 on NLF). In contrast, the BRN 
class showed the lowest relative uncertainties, ranging between (8 ±
3)% (N16) to (10 ± 4)% (N18). In the case of the NIR band, results were 
more consistent between land classes and sensors, and were noticeably 
lower than those of the Red band, ranging between (7 ± 2)% (N19 on 
BLF) to (14 ± 8)% (N14 on NLF). 

4.7. Relationship between Red and NIR bands relative errors 

Knowledge of possible correlation between the Red and NIR band 
errors can be of interest for downstream data producers and users. In this 
context, Fig. 12 shows the spatial distribution of the determination co
efficient (R2) computed between the Red and NIR bands relative errors 
with data from all AVHRR sensors. Results showed a strong relationship 
between relative errors over bare areas in North Africa and Southern 
Asia (R2 greater than 0.8), and over open shrubland areas in North 

America, South America, South Africa, and Australia (R2 greater than 
0.5). Similar results were obtained for each sensor independently but are 
excluded for brevity. 

5. Discussion 

In this paper, we evaluated the performance of the AVHRR surface 
reflectance long-term data record between 1984 and 2011 using 
Landsat-5 TM surface reflectance as reference. While the current LTDR 
temporal coverage spans the period between 1982 to present day, we 
limited this study to the period where Landsat-5 was active. This allowed 
us to evaluate the performance of all AVHRR sensors with one consistent 
reference that has gone through a series of strict recalibration proced
ures (Chander et al., 2009). 

The VJB method was used to normalize the AVHRR surface reflec
tance to the observation geometry of TM5, which largely improved the 
uncertainties between sensors, and is explained by the diminution of 
errors generated from the very different observation geometries. These 
results agree with previous studies (Bréon and Vermote, 2012; Franch 
et al., 2014a, 2019; Villaescusa-Nadal et al., 2019b) that showed the 
good performance of the BRDF-adjustment obtained with the VJB 
method. In this paper, we used global V and R coefficients derived from 
MODIS and applied them to adjust AVHRR data, which are the same 
coefficients used to normalize the BRDF in the LTDR product. 

Adjustment of spectral differences showed mixed performance. 
When applied alone, only a couple of sensor-band combinations 
improved the agreement between AVHRR and TM5, and the general 
results showed an overcompensation and increase of bias. On the other 
hand, when the SBAFs were used to spectrally adjust the BRDF- 
normalized data, results improved as it further reduced the mean bias 
between AVHRR and TM5 for almost all cases. This might be explained 
by the dependence of the spectral adjustment factors on the NDVI, which 

Table 3 
Number of CMG pixels per season.   

Season  

Northern Hemisphere Southern Hemisphere 

Platform DJF MAM JJA SON DJF MAM JJA SON 

N07 14,527 14,109 27,725 19,077 1,695 862 7,152 4,631 
N09 50,760 98,427 114,798 97,697 13,442 20,172 32,442 21,383 
N11 66,669 179,228 219,928 147,291 17,795 50,791 96,986 28,075 
N14 123,343 166,604 146,475 182,020 10,230 42,750 82,012 29,062 
N16 142,899 258,199 323,567 255,178 32,492 63,199 175,859 62,986 
N18 95,938 171,564 282,999 415,161 16,426 118,936 300,556 94,323 
N19 129,799 201,134 522,381 494,477 24,814 109,541 184,704 100,931  

Fig. 11. Accuracy (top) and relative uncertainty (bottom) results by land cover class for Red and NIR bands. Boxplot notches represent the median confidence 
interval. Green triangles represent the mean. Values outside the 2.5th and 97.5th percentiles are plotted individually outside the boxplot whiskers. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Number of CMG pixels per land cover class.   

Land Cover Class 

Platform NLF BLF SSM CGL BRN 

N07 435 4,674 18,985 50,202 15,548 
N09 2,770 17,543 120,336 225,264 82,994 
N11 2,855 17,168 204,620 422,263 159,665 
N14 1,951 16,295 189,696 368,736 205,684 
N16 12,485 42,271 372,754 565,779 320,876 
N18 11,090 44,301 557,509 755,103 127,602 
N19 21,853 82,534 649,113 850,797 162,205  
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although is less perturbed than independent bands to observation ge
ometry, it is affected to some extent due to the increase of BRDF effects 
with wavelength, something that is evidenced by the larger improve
ments on the NIR band after the BRDF adjustment showed in Fig. 5, and 
that is in agreement with previous studies (Brown De Colstoun and 
Walthall, 2006; Claverie et al., 2015; Mahtab et al., 2009). The largest 
improvements in APU were obtained with both the BRDF and spectral 
adjustments applied. 

The accuracy, precision, and uncertainty (APU) graphs revealed 
similar performance between the Red and NIR bands, with results for 
most of the AVHRR sensor-bands close or within the combined AVHRR 
and TM5 specification. Regarding the shape of the APU curves, two ef
fects can be noted: First, the aerosol and Rayleigh scattering that in
crease the signal reaching the sensor at low surface reflectance values; 
and second, the signal attenuation by aerosol absorption that occurs at 
higher values (Kaufman, 1987). These effects are shown by the APU with 
low and high reflectance values showing a positive and negative bias, 
respectively. 

Temporal variations in APU were relatively small, with a general 
decreasing trend during the study period. In the case of the N07-N14, 
there is an increase in the uncertainty during the lifetime of each 
sensor, which can be attributed to their orbital drift (Kaufmann et al., 
2000; Latifovic et al., 2012). This effect was not evident on N16-N19 
platforms, as their orbits were more stable during the years included 
in the study period. These results were consistent with the errors re
ported by the previous evaluation of N16-N19 surface reflectance using 
MODIS (Franch et al., 2017). Seasonal analysis of relative uncertainties 
did not show significant differences between seasons. 

The spatial distribution of accuracies showed better performance of 
the Red band, which had biases closer to zero and that were more stable. 
Results for the NIR showed inconsistencies in the biases between some 
sensors, which were more noticeable between N11 and N14. These re
sults are coherent to findings of previous studies that reported abrupt 
changes in the LTDR surface reflectance magnitude when transitioning 
between sensors (Giglio and Roy, 2020; Song et al., 2018a, 2018b). 
Spatial distribution of relative uncertainties was consistent between the 
sensors on all POES satellites. The highest values were located over high 
latitudes and over tropical regions, which might be attributed to stron
ger atmospheric effects (Vermote and Kotchenova, 2008), cloud and 
snow pixel miss-classification in these areas (Claverie et al., 2015; Feng 
et al., 2013), and varying performance of the LTDR over different land 
cover types. The latter was also evidenced by the land cover analysis that 

revealed larger and less consistent uncertainties over forest classes. 
Overall, the NIR showed lower relative uncertainties than the Red, 
which is due to the normally higher NIR reflectance magnitudes. 

The spatial analysis of Red versus NIR bands errors showed strong 
correlations over barren and sparsely vegetated areas, which are 
commonly associated with low values of vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI) and 2-band Enhanced 
Vegetation Index (EVI2). In contrast, only weak relationships were 
found over other regions and land covers. This might be of particular 
interest to producers and users of AVHRR land datasets, as error corre
lation between bands can impact downstream products. 

6. Conclusions 

In this study we evaluated the accuracy, precision, and uncertainty of 
the AVHRR Long Term Data Record for the period 1984–2011 using 
globally distributed data from the Thematic-Mapper sensor onboard 
Landsat-5 used as a reference. The evaluation was carried out for the 
AVHRR sensor on each POES satellite independently. 

We analyzed four different adjustment levels of AVHRR data: a “No- 
Adjustment” level, obtained by removing the BRDF normalization 
initially present on the LTDR product, which represents the original 
AVHRR data after the atmospheric correction process; a “BRDF adjusted 
level” which was obtained by implementing the VJB method to account 
for reflectance variations due to changes in sun and view geometries; a 
“spectrally adjusted level”, where spectral adjustment factors derived 
from Hyperion hyperspectral data were applied to minimize the band 
spectral differences between sensors; and a final adjustment stage, 
where both the BRDF and spectral adjustments are applied. The VJB 
BRDF-correction method used in the LTDR showed good performance 
when it was used to adjust the AVHRR observations to the Landsat-5 
geometry, reducing the uncertainties when compared to unadjusted 
data. The spectral adjustment factors derived from Hyperion data 
proved to be efficient, when applied to BRDF-normalized data, further 
reducing the uncertainties in most cases. However, when it was applied 
to data without BRDF correction, the results were mixed, and evidence 
of over adjustment was observed. 

Results of the cross-comparison showed a good agreement between 
AVHRR and TM5, with uncertainties that were close to or within the 
proposed combined specification of 0.071ρ + 0.0071. The Red band 
showed biases closer to zero and more temporally consistent than the 
NIR band, which broad spectral response makes it especially sensitive to 

Fig. 12. Determination coefficient between Red and NIR bands relative errors. The values were computed in 2.5◦ (latitude and longitude) bins considering all 
corresponding CMG pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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water vapor absorption effects. Moreover, certain regions showed in
consistencies in the surface reflectance bias between contiguous AVHRR 
sensors, which suggests that, depending on the nature of their study, 
data users might still need to utilize data normalization steps and 
carefully examine their results for artifacts. Nevertheless, the LTDR is an 
ever-evolving project, and future versions will concentrate on mitigating 
these data inconsistencies which might arise from orbital drift, inter- 
satellite calibration issues, spectral differences, BRDF normalization, 
or quality of ancillary data products for atmospheric characterization. In 
this regard, we urge the users to always consult the most recent ATBD 
and user’s guide available for better understanding of the current LTDR 
processing. 

This work presents the first comprehensive evaluation of the AVHRR 
surface reflectance Long Term Data Record that encompasses data from 
the seven POES satellites, providing valuable information on its per
formance and uncertainties. Future research will focus on analyzing the 
uncertainty sources, and on improving the atmospheric correction of the 
LTDR through the retrieval of water vapor concentration from AVHRR 
data and the implementation of aerosol correction over land. 

Funding 

This research was funded by the National Aeronautics and Space 
Administration (NASA) grant number 80NSSC18M0063 and partially 
supported by the program Generacio Talent of Generalitat Valenciana 
(CIDEGENT/2018/009). 

Credit authorship contribution statement 

Andres Santamaria-Artigas: Conceptualization, Methodology, 
Writing - original draft, Writing - review & editing. Eric Vermote: 
Conceptualization, Methodology, Writing - review & editing, Supervi
sion. Belen Franch: Conceptualization, Methodology, Writing - review 
& editing, Supervision. Jean-Claude Roger: Conceptualization, Writing 
- review & editing, Supervision. Sergii Skakun: Methodology, Writing - 
review & editing, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Bhatt, R., Doelling, D.R., Scarino, B.R., Gopalan, A., Haney, C.O., Minnis, P., Bedka, K.M., 
2016. A Consistent AVHRR Visible Calibration Record Based on Multiple Methods 
Applicable for the NOAA Degrading Orbits. Part I: Methodology. J. Atmos. Ocean. 
Technol. 33, 2499–2515. https://doi.org/10.1175/JTECH-D-16-0044.1. 
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