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Cities and surrounding suburbs are Earth's fastest growing land use. Urban impervious surfaces affect hy-
drological and energy balances, as well as biological composition and functioning of ecosystems. Although
datasets have been produced documenting urban growth at multiple time periods in coarse intervals, there
remains an unmet need for observations spanning multiple decades at high frequency. We have developed
an empirical method for retrieving annual, long-term continuous fields of impervious surface cover from
the Landsat archive and applied it to the Washington, D.C.–Baltimore, MD megalopolis from 1984 to
2010. Fitting and applying a single regression model over time, the method relies on a multi-annual train-
ing sample of high-resolution impervious cover layers tied to coincident intra- and inter-annual Landsat
image composites. These predictor images are composited and normalized to maximize discrimination
of impervious surfaces from intermittently bare agricultural fields and minimize inter-annual variation
due to phenology, solar illumination, and atmospheric noise. Excluding the year 2009 due to lack of data
availability resulting from nearly continual winter snow cover, the resulting dataset is a continuous-field
representation of impervious surface cover at 30-m horizontal and annual temporal resolution from
1984 to 2010. Average error was approximately ±6% cover, with outliers due to shadows from large build-
ings in winter images. The region's impervious surface cover grew from 881 to 1176±11 km2 over the
27-year span—an average annual gain of approximately 11±2 km2/year—with great variability among
local municipalities in terms of rate of development. Patterns including intensification (i.e., “infill”) and
expansion (i.e., exurban or “sprawl”) of development, as well as fragmentation and isolation of natural
areas were clearly visible in the data at various places and times. Neither impervious surface loss nor
deceleration of growth were observed in any of the cities or counties over the study span. These findings
show that empirical retrieval of impervious coverage at the spatial and temporal scale of the Landsat
archive is possible using dense time-stacks of calibrated Landsat images, and that long-term records
such as this can provide new opportunities for analyzing land-use patterns and their underlying causes
to improve understanding of socio-economic processes and human–environment interactions.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Although urban areas cover only 0.5% of Earth's terrestrial surface
(Schneider et al., 2009), cities represent one of Earth's fastest growing
land-use types on a per-area basis, and over half of the planet's 7 bil-
lion humans now reside in cities (UNFPA, United Nations Population
Fund, 2011). A characteristic land cover and indicator of urban land
use is impervious surface cover, a category grouping all surface mate-
rials through which precipitation does not penetrate, including paved
roads, sidewalks, parking lots, buildings, and other built structures.
Urban impervious surfaces generate the “urban stream syndrome”
(Walsh et al., 2005), which is characterized by increased hydroperiod
+1 301 314 9299.
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variability, water temperature, sediment load, and levels of heavy
metals, nitrogen, phosphorous, and fecal coliform bacteria. Urban
surfaces also generate the “urban heat island effect” (Oke, 2006), an
increase in temperature due to shifting energy balance toward sensible
over latent heat fluxes that has been shown to alter regional climate,
shift biotic community composition and even accelerate climate-
induced species' range shifts (Menke et al., 2010). Urbanization is also
associated with the “demographic transition” in humans (Davis,
1945), manifested by delayed reproduction and decreased birth and
death rates leading to slower or even negative population growth rates.

Monitoring the spatio-temporal complexities of urbanization has
been difficult. Land-use dynamics exhibit temporal nonlinearity and
spatial heterogeneity due to complex interactions with the socio-
economic and ecological environment (Lambin et al., 2003). Urbaniza-
tion is a feedback system that is economically driven, promoted by
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Fig. 1. Study area. Counties labeled are those for which impervious surface reference
data were collected. The dotted line represents the nominal WRS-2 boundary, but
the shaded region indicates the effective study area, the intersection of all WRS-2 im-
ages used.
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local zoning and taxation policies, and constrained by laws to conserve
natural resources and open spaces (Westervelt et al., 2011). In order to
monitor change and understand the causes and consequences of urban-
ization, land-cover datasets must have sufficient temporal resolution to
record the complexities of change. Jensen and Cowen (1999) called for a
1- to 5-year basis for monitoring urbanization, similar to the recom-
mendation of Lunetta et al. (2004) of a 3-year frequency for monitoring
change in forests.

Impervious surfaces have been remotely sensed at a range of spatial
scales using a variety of data sources and methods. Several global land
cover datasets include urban categories (e.g., Friedl et al., 2002;
Hansen et al., 2000; Loveland et al., 2000; Potere et al., 2009; Small et
al., 2005), but the coarse resolution of such data sets is insufficient to
represent spatial variation within cities, towns, and settlements. Using
seasonal triplets of multi-spectral Landsat images, Yang et al. (2003)
generated a percent impervious surface cover dataset for the 2001 Unit-
ed States' National Land Cover Dataset ("NLCD 2001") (Homer et al.,
2004) at 30-m resolution. Leveraging the distinct geometric patterns
of anthropogenic structures, high-resolution (b5 m) data have been
used in manual digitization and automated image segmentation ap-
proaches to detecting impervious cover (e.g., Goetz et al., 2003;
Thomas et al., 2003). LightDetection AndRanging (LiDAR) andSynthetic
Aperture Radar (SAR) measurements of vertical structure are also in-
creasingly being employed to detect urban and impervious types
(Hodgson et al., 1999; Jiang et al., 2009).

Extension of impervious surface records into the temporal domain
has been more difficult, and so the great majority of impervious surface
datasets currently record only one point in time. However, multi-
temporal remote sensing of urban cover has had some recent successes,
and development is acceleratingwith recent increases in data availability.
Masek et al. (2000)monitored urbanization around theWashington, D.C.
metropolitan area in two broad intervals between 1973 and 1996 by
subtracting NDVI images recorded by Landsat Multi-Spectral Scan-
ner (MSS) and Thematic Mapper (TM) sensors. More recently, Yin
et al. (2011) retrieved a time series of four maps between 1979 and
2009 from Landsat data to observe long-term acceleration in the
development of the Shanghai metropolitan area, and Taubenböck
et al. (2012) combined Landsat images from circa 1975, 1990,
2000, and 2010 and InSAR data from 2010 to monitor growth of 27
megacities at an approximately decadal interval. Suarez-Rubio et
al. (2012) employed spectral endmember analysis, decision trees,
and post-classification morphological analysis to assess exurban de-
velopment nearWashington, D.C. However, despite their advantages
over static maps, bi-temporal, and even coarsely multi-temporal
datasets do not have the necessary temporal scale to observe
higher-order complexities (e.g., acceleration and deceleration) of
land-cover and land-use change. In order to resolve these patterns,
observations must span multiple decades at high frequency.

In this paper, we describe an empirical method for retrieving
long-term records of impervious surface cover from time series of
Landsat images, using the rapidly growingWashington, D.C.–Baltimore,
MD metropolitan area as an exemplar of a variety of change dynamics.
We estimate the uncertainty of our results by validation relative to an
independent, withheld sub-sample of the reference data in multiple
years.We then highlight characteristic patterns and dynamics of urban-
ization in the region, comparing our findings to previous studies in the
region based on other methods.

2. Methods

2.1. Study area

Our study area was the path-15/row-33 scene of the Landsat
World Reference System 2 (WRS-2), encompassing the Washington,
D.C.–Baltimore metropolitan region on the eastern seaboard of the
United States (Fig. 1). The natural vegetation of the region consists
predominantly of mixed forests dominated by deciduous tree spe-
cies. Land use in the region is mainly agricultural, with many small
towns and a few large urban agglomerations around the anchor cit-
ies of Washington, D.C. and Baltimore, Maryland. Although the re-
gion is among the nation's fastest-growing in terms of human
population, most growth has been outside of urban cores. For exam-
ple, while the human population of Washington shrank from
6.07×105 to 6.02×105 and that of Baltimore shrank from
7.36×105 to 6.21×105 residents between 1990 and 2010, three out-
lying Maryland counties—Calvert, Howard, and Montgomery—grew
from 0.51×105, 1.87×105, and 7.57×105 residents in 1990 to
0.89×105, 2.87×105, and 9.72×105 residents in 2010 respectively
(Maryland State Archives, 2011; US Census Bureau, 2012).

2.2. Model

We modeled impervious surface cover (ISC), the percentage of
each pixel covered by impervious surfaces, as a piecewise-linear func-
tion of a set of predictors derived from multi-spectral measurements
(X):

ISCi;t ¼ f Xi;t

� �
;

where subscript i denotes the pixel's location in space and t refers to
its location in time, indexed by year. By multiplying by the pixel's area
(i.e., 900 m2), ISC may be converted to impervious surface cover, ISA,
expressed in areal units. Derivation of the spectral predictors, X, is
described in the following section.

2.3. Data

Reference measurements of impervious cover were composed from
vector GIS layers of impervious surfaces acquired from local jurisdic-
tions over multiple years. Predictor data were seasonal composites of
Landsat images. Between 1984 and 2010, every year was included in
the analysis except 2009, whichwas excluded due to insufficientwinter
data availability resulting from record snowstorms and nearly continual
winter snow cover.

2.3.1. Reference impervious data
Impervious surface data spanning multiple years were collected

from planimetric data recorded by municipalities within the study
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area. These data were provided by: Calvert and Howard counties, MD
for 2006; Carroll and St.Mary's counties,MD for 2007; andWashington,
D.C. and Queen Anne's County, MD for 2008. Polygons surrounding
roads, parking lots, buildings, driveways, and sidewalks using sub-
meter resolution imagery were digitized by local municipalities.
These data were generalized to a common binary pervious/impervious
scheme (including all of the above features as “impervious” and the
excluded “background” polygon assumed to be undeveloped, pervi-
ous surface), transformed to a common geographic projection,
rasterized to (binary) 1-m resolution, and resampled to continuous
(percent-cover) scale at Landsat (30-m) resolution. Eighty-five per-
cent of the ISC pixels were used as a training sample for model fitting,
and the other 15% were randomly sampled and withheld as a test
sample for validation.

2.3.2. Predictor data
Landsat-5 Thematic Mapper (TM) images were selected based on

seasonal criteria (Fig. 2). The calendar year was divided into pheno-
logical peak and dormant seasons (i.e., “summer”, from DOY 129 to
273 and “winter”, from DOY 1 to 80 and DOY 320 to 366), excluding
spring and autumn transitions to avoid inter-annual variation, by in-
spection of 10-year phenological norms derived from NDVI measure-
ments from the MODerate-resolution Imaging Spectrometer (MODIS)
over deciduous forest pixels within the WRS-2 scene (Kim et al.,
2011). Within peak and dormant seasons, every Landsat TM image
with less than 10% cloud cover estimated by the Automated Cloud
Cover Assessment (ACCA) was downloaded from USGS EROS Data
Center. Winter images were visually inspected, and those with visible
snow cover were removed.

Retained images were processed through the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Masek et al.,
2006), an implementation of the 6S atmospheric correction codebase
Fig. 2. Intra- and inter-annual distribution of input Landsat images. Green and brown boxes
and 2008. Black boxes describe seasonal composites for the year 2006, with a centered, app
pretation of the references to color in this figure legend, the reader is referred to the web v
(Vermote & Kotchenova, 2008), to minimize atmospheric effects and
retrieve estimates of surface reflectance. Clouds, cloud shadows, and
water were masked using methods described by Huang et al. (2010).

Depending on acquisition date, images were composited into either
summer orwinter predictors in order tominimize residual atmospheric
and phenological variation. For winter predictors, the median of each
solar-reflective band was calculated from the cloud- and shadow-free
pixels of the selected winter images within any year and its adjacent
winter months from the years before and after (i.e., DOY 320 to 366
from the previous year and 1 to 80 from the following year), resulting
in a single, six-band image of winter medians for each approximately
491-day nominal “year”. Although taking medians of three full years
could obscure abrupt changes, this blurring artifact was minimized by
shrinking the temporal window to include only the winter months in
the preceding and following years that were directly adjacent to the
year of interest.

Surface reflectance values were standardized and normalized to
remove environmental noise remaining after physical atmospheric
correction, e.g., the brightening effect of thin clouds or the darkening
effect of their partial shadows (Fig. 3). The bands of each pixel were
then standardized to a common dynamic range via:

ρib
′ ¼ ρx;b

maxb ρbð Þ ð1Þ

where ρxi is the reflectance of band b in pixel i, standardized by divid-
ing by an a priori upper limit to reflectance in that band: blue (0.100),
green (0.110), red (0.120), near-infrared (0.225), shortwave-infrared
1 (0.205), shortwave-infrared 2 (0.150). This standardization is com-
monly employed in ecology for equalizing the contributions of rare
and abundant species to indices of community similarity (Legendre
delineate summer and winter intervals. Reference data were collected for 2006, 2007,
roximately 1.25-year winter window and trailing, 3-year summer window. (For inter-
ersion of this article.)



Fig. 3. Winter-median surface reflectance values over time for selected stable pixels of representative land cover types within the study area. Missing values over Baltimore and
water are due to clouds. Note the synchronicity of fluctuations between bands in comparison to the stability of NDVI over time (NDVI has been rescaled by a factor of 1000 for com-
parison.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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& Legendre, 1998). Standardized reflectances were then normalized
by dividing by their across-band sum in each pixel:

ρi;b
′′ ¼ ρ′

i;b

∑iρ
′
i;b
: ð2Þ

This process operated at the pixel level and satisfactorily reduced
inter-annual variations that were correlated across all bands (Fig. 4).

The normalized winter medians were augmented with informa-
tion from the growing season to maximize discrimination between
intermittently bare agricultural fields and persistently bare impervi-
ous surfaces. The Normalized Difference Vegetation Index (NDVI)
was calculated from summer images, and then each summer NDVI
pixel was subjected to a three-year (summer) trailing-maximum
convolution:

sNDVIi ¼ maxtþ2
t NDVIið Þ ð3Þ

in which the maximum NDVI value is taken for each pixel in summer
images of the nominal year and the two years following. This process
consistently minimized year-to-year phenological differences and
amplified the difference between vegetated and unvegetated surfaces
across urban, suburban, and agricultural land uses (Fig. 5).
2.4. Modeling

Impervious surface layers were overlaid on seasonal Landsat mea-
surements from coincident years, and a joint sample of reference and
predictor variables was extracted to generate a multi-year training
dataset (n=2,178,175). The training data were used to fit a regres-
sion tree (Cubist™; Quinlan, 1993) to infer impervious surface cover
from the winter median reflectances and summer maximum NDVI.
The fitted model was applied to every year's two-season Landsat
data from 1984 to 2010 to retrieve annual estimates of impervious
surface cover. Impervious cover of pixels missing reflectance data in
one season (e.g., due to cloud cover) was estimated based on avail-
able data from the other season.

2.5. Validation

Errors were evaluated relative to the training data by ten-fold
cross validation and also to the ~15% withheld (i.e., not included in
training) sub-sample of the reference data for model testing (n=
396,751). Ten-fold cross validation is a procedure in which the
mean value of a selected metric is calculated based on ten random
subsets of the original data; the data are split into 10 random
sub-sets, a model fit to 90% of the data is validated against each
remaining 10% in iteration across the ten subsets, and the mean is



Fig. 4. Standardized and normalizedwinter-median surface reflectance values over time for forest, high-density urban, and low-density urban pixels. Note the stability of the values com-
pared to the untransformed data in the previous figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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calculated from the ten sub-sample evaluations. Cross-validation was
performed primarily for the purposes of model development, whereas
validation based on the withheld sample was used for estimation
and characterization of errors. Uncertainty metrics were based on
average differences between paired model and reference values,
quantified by Mean Bias Error (MBE), Mean Absolute Error (MAE),
and Root-Mean-Squared Difference (RMSD):

MBE ¼ ∑n
i¼1

Mi−Ri

n
ð4Þ

MAE ¼ ∑n
i¼1

Mi−Rij j
n

ð5Þ

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Mi−Rið Þ2
n

s
ð6Þ

where Mi and Ri are respectively modeled and reference impervious
cover values at a location i in a sample of size n.

3. Results

3.1. Model fit and validation

Internal cross-validation of the regression tree estimated an average
error (MAE) of ±5.9% cover, with a correlation coefficient between
inferred and observed cover of 0.64. Estimates were constrained to lie
within the interval of 0–100% cover, so errors were predominantly pos-
itive at low impervious cover and negative at high cover. Results were
identical for training and withheld test data, suggesting negligible
model over-fittingwithin the sample relative to the population. All vari-
ables were used with approximately equal frequency in terminal-node
regressions, but summer-maximum NDVI was by far the most impor-
tant predictor in terms of usage rate in conditional splits (Table 1).
Winter-median blue, SWIR2, and red reflectances were each used
in approximately half of tree splits, whereas winter-median SWIR1,
green, and NIR reflectances were relatively unimportant in defining
tree splits.

Differences between estimated and reference values of percent im-
pervious cover had a strongly peaked distribution centered close to
zero (Fig. 6). The average difference between model and reference
cover (Mean Bias Error, MBE) was −3.5%, with a median of 0.0. The
skew was due to a small mode of large, negative errors located at ap-
proximately 100% cover in the reference data, which further inspection
revealed to be under-estimation of impervious cover in the shadows of
tall buildings — an artifact imposed by the shallow illumination angles
of winter images. Another source of under-estimation was the obscur-
ing of roads, sidewalks, and other short-statured structures by trees —
an artifact which was partially, but not completely, minimized by
using dormant-season images. Over-estimates tended to be small, fol-
lowing an approximately negative-exponential distribution, whereas
under-estimates were more normally and widely distributed. MAE of



Fig. 5. Demonstration of 3-year, summer-maximum NDVI in urban (Washington, D.C.), suburban (Northern Virginia), and agricultural (Delmarva Peninsula, Maryland) regions.
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independent test data was 5.87%, equal to that obtained from cross-
validation. RMSDwasmuchhigher, 14.46%, corroborating the strong in-
fluence of outliers. The correlation coefficient (r) between estimated
Table 1
Cubist™ regression tree summary of predictor variable importance.

Predictor layer Condition (split) use rate Terminal-node regression
use rate

Summer-maximum NDVI 0.82 0.82
Blue 0.55 0.76
SWIR2 0.54 0.83
Red 0.48 0.73
SWIR1 0.13 0.80
Green 0.11 0.75
NIR 0.05 0.71
and reference impervious cover was 0.64, again likely due to the lever-
age of outliers on the negative tail of the error distribution.

Although uncertainty increased in proportion to area, local dynam-
icswere capturedwith high certainty. This local precision is exemplified
by the development of FedEx Field, a sports stadium in Landover, Prince
George's County, Maryland (Fig. 7). Impervious surfaces that remained
constant at or near zero cover values in all three image dates (1993,
2001, and 2010) are black — e.g., the large patches of forest and fields
in the western and northeastern portions of the image. Patches that
remained at or near complete (100%) impervious cover in all three
years—e.g., the numerous large roads and commercial parcels through-
out the image—are white. Patches with constant values between 0 and
100% range in various shades of gray — e.g., the curving residential
streets, which exhibit an erroneous bluish tint due to the filling in of



Fig. 6. Distribution of error in estimates of percent impervious surface cover relative to
a random 15% sub-sample of reference data withheld for validation. Data are from a
pooled sample from several municipalities over three years.

Fig. 7. Development of FedEx Field (Landover, MD) and surrounding neighborhoods.
The temporal composite (bottom) shows impervious cover in 1993 in blue, 2001 in
green, and 2010 in red. White pixels were impervious in all three dates, and black
pixels were non-impervious in all three dates. Pixels that were impervious in both
2001 and 2010 but not in 1993 are displayed in yellow (e.g., FedEx Field, near the cen-
ter of image), and pixels that were impervious in 1993 and 2001 but not 2010 are in
cyan (e.g., demolished building in northwest corner of image). Pixels that were became
impervious between 2001 and 2010 are red — e.g., the residential subdivision in the
northeast corner of the image.
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landscape trees overmultiple decades. Patches thatwere developed be-
tween 1993 and 2001 and remained so in 2010 are yellow— e.g., FedEx
Field, slightly below and right of center in the image, was built in 1997.
Note the elliptical patch of zero-impervious cover in the center of the
stadium; this is the grass playing field. Patches that were developed be-
tween 2001 and 2010 are red— e.g., the commercial–residential devel-
opment in the northeast corner of the image (Note that development is
captured reliably regardless of whether the preceding land cover was
forest or herbaceous agriculture.). The cyan patch in the northwest cor-
ner of the image is an exceedingly rare class of urban change: impervi-
ous surface loss, which can be confirmed as buildings in 1993 and 2001
but bare, disturbed soil in 2010.

3.2. Impervious surface development of the Washington, D.C.–Baltimore,
MD region

In 1984, the region had approximately 88,129±1135 ha of impervi-
ous surface cover — 0.037±0.0012% of the total area. In 2010, the
region's impervious cover had grown to approximately 117,646 ha of
impervious surface (4.9% of the total area). The average annual rate of
growth was 1135±208 ha/year (Pb0.0001) — i.e., approximately 11
km2 of new impervious surfaces gained per year over the region. The
distribution of impervious surface in 1984 shows the two major cities
of the region—Washington, D.C. and Baltimore, MD—as hotspots of
impervious cover linked by a suburban corridor served by rail and a
number of arterial roads, including Interstate highway I-95, US highway
US-29, andMaryland State Route-2 (Fig. 8). Richmond, Virginia lieswell
to the south, connected toWashington, D.C. by I-95. Annapolis, MD, the
state capital, is also visible as a small cluster of impervious surface south
of Baltimore and East of Washington, D.C. on the Chesapeake Bay and
connected to Washington by US Highway 50 and to Baltimore by I-97,
which was completed in 1993. The heavily industrialized Baltimore
has a greater density of impervious surface than the more residential
cities, Washington and Annapolis, whose principal economies are
governance. Several smaller cities and towns are also visible as clusters
of impervious surface between Washington and Baltimore, inter-
connected by a lattice of arterial highways and smaller roads. The
Patuxent Wildlife Research Refuge, which is covered predominantly
by forests, fields, and natural wetlands, is a large patch of persistent
non-impervious cover between 1984 and 2010 within the suburban
D.C.–Baltimore corridor. Likewise, agricultural lands are visible as
large regions of low impervious cover outside the greater metropolitan
area (e.g., northwest corner of the study area, southeast of Washington,
and east of the Chesapeake Bay).

By 2010, the impervious surface of the small towns between
Washington and Baltimore—aswell as that ofWashington and Baltimore
themselves—had intensified and expanded. Infill development is ap-
parent as intensification of increasing imperviousness within the cit-
ies. Road widening is also visible, e.g., as an increase in impervious
surface percentage of the US-50 roadway. Fragmentation and isola-
tion of natural forest habitat are apparent as increases of impervious
surfaces abutting and surrounding the wildlife refuge and other
areas.



Fig. 8. Impervious surface cover of the study area in 1984, and growth of the D.C.–Baltimore corridor from 1984 to 2010. Points of interest are: (A) Washington, D.C.; (B) Baltimore,
Maryland; (C) Annapolis, Maryland; (D) Patuxent Wildlife Research Refuge; and (E) US Highway 50. Note that the data displayed are from years without training data.
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Linear growth is observable in several of the region's municipalities
(Fig. 9, Table 2). Fairfax county showed the greatest increase in imper-
vious area, at a rate of 163.91±21.67 ha/year, or 0.16±0.021% of the
county area per year (pb0.001). Calvert county developed much more
slowly, at a rate of 11.52±4.56 ha, or 0.02±0.008%, per year (p=
0.019). Howard county's impervious surface cover nearly doubled in
area, increasing at a rate of 65.29±7.08 ha (0.1±0.01%) per year, and
that of Prince George's County, MD increased at a rate of 108.22±
24.5 ha (0.09±0.02%) per year. However, given the small proportion
of change over the large areas of the counties, precisionwas insufficient
to consistently observe second-order changes such as acceleration or
deceleration. Uncertainty in impervious surface cover increased with
area, so the temporal trajectories of the larger counties—e.g., Prince
George's County, MD and Fairfax County, VA—are surrounded by greater
noise than are the smaller Howard and Calvert Counties, MD. However,
this variation is consistent with overall error estimates.

Although lying in different states and therefore different taxation
and zoning policies, Fairfax and Prince George's counties shared similar
growth patterns: low to intermediate fractional cover, high areal cover,
and rapid development over the study span — suggesting that their
other similarities (e.g., large, suburban, and close to the District of
Columbia) have a greater effect on development than local land-use
policies. Their large size and large proportion of intermediate cover
values also likely led to their relatively large uncertainties.

Cities were proportionally more developed than counties (Fig. 9),
with Baltimore, MD, Alexandria, VA, andWashington, D.C. themost de-
veloped municipalities in the region. Cities showed great variability in
development rates, both amongmunicipalities andwithin somemunic-
ipalities over time. In general, impervious surface growth in cities was
inversely proportional to existing impervious surface cover. The larger,
more developed cities of Baltimore and Washington, D.C. began with
higher proportional coverage and showed very little change over the
period of study. In contrast, Manassas Park, VA began with a low pro-
portion of impervious cover (~8%), but accelerated development
around 1995, shifting from growth of approximately 4% from 1984 to
1995 (~0.3%/year) to nearly 0.6%/year from 1995 to 2010 (Fig. 9). Al-
though the impervious cover of Fairfax city grew at a slow pace be-
tween 1984 and 2010, that of Fairfax County grew much more
quickly, indicating exurban, or “sprawl” development. Similarly, Freder-
icksburg, VA accelerated its rate of development around the same time,
shifting from near zero growth from 1984 to 1995 to approximately
0.3% areal increase per year from 1995 to 2010. However, even given
the clear growth of small cities such as these, much of Fredericksburg's
development was outside its municipal boundaries (Fig. 10).

4. Discussion

4.1. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan
region

TheWashington, D.C. metropolitan area and the greater Chesapeake
Bay watershed have received much attention due to their rapid de-
velopment and ecological importance. Masek et al. (2000) used dif-
ferences in NDVI in two intervals (i.e., between three image dates)
from 1973 to 1996 to detect changes in urban cover in theWashington,
D.C. metropolitan area. Jantz et al. (2005) assessed the loss of resource
lands in the broader Chesapeake Bay watershed between 1990 and
2000 by overlaying a discretized map of impervious cover change
from 1990 and 2000 on land cover maps from circa 1990. Suarez-
Rubio et al. (2012) assessed exurban development in northern Virginia



Fig. 9. Estimated change in impervious surface coverage of selected counties (top) and cities (bottom) from 1984 to 2010. No impervious cover map was possible for 2009, due to
lack of winter data availability from major snowstorms in 2009 and early 2010. Solid lines represent linear models for each municipality.
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and western Maryland between categorical maps from 1986, 1993,
2000, and 2009.

The areas of interest of these studies all differ, and each study
responded to the uncertainty of its urban cover estimates by coarsening
the thematic resolution to broad categories. However, some similarities
are evident despite the differences in spatial and thematic scale. Overall,
urban land cover increased at a rapid and accelerating pace in the re-
gion, with growth concentrated at the expanding fringes of existing
urban clusters. Growth in counties neighboring cities exceeded that of
outlying counties as well as the cities themselves, reflecting a predom-
inance of low-density development. Development patterns varied
across jurisdictions, with some counties adopting clustered patterns
(e.g., Montgomery County, MD) and others adopting more dispersed
patterns of sprawl (e.g., Fairfax and Louden counties, VA).

Although all these studies are in agreement over the general spa-
tial patterns and temporal trajectories of urbanization in the region,
one important difference is evident between previous studies and
our own. Masek et al. (2000) found an increase in built-up area of
22 km2/year, Jantz et al. (2005) found a 41% increase in impervious
surface area over the entire watershed (most of which is less devel-
oped than the Washington–Baltimore area), and Suarez-Rubio et al.
(2012) found an increase of 6.1%/year growth in exurban develop-
ment alone. In contrast, our estimate based on per-pixel percentages
of impervious cover (~11 km2/year) is much more conservative than
any of these findings based on categorized data. Because urbanization
in the region is dominated by sparse development, our estimate,
which is based upon data of higher thematic resolution, should be
considered a refinement of these earlier estimates.

4.2. Long-term retrieval of impervious surface cover from the Landsat
archive

In a recent review of remote sensing methods for estimating im-
pervious surface cover, Weng (2012) called for more research in the
change and evolution of impervious surfaces over time. The review
focused on novel machine learning algorithms and new data sources,
concluding that high-resolution, SAR, LiDAR, and other new image
products can increase accuracy of maps of present and recent condi-
tions. However, these new datasets do not have the spatial coverage
or temporal scale needed to monitor urbanization over the long term.

The Landsat series of sensors, spanning over thirty years of Earth's
dynamic recent history, is unique in its ability to support retrieval of



Table 2
Summary of regression coefficients and fit of linear regression of impervious surface area (ha) and cover (percent of municipal area) over time (years) from 1984 to 2010, excluding
2009 (n=26, d.f.=24) for selected counties and cities. Cities and counties in bold font are mentioned in text.

Intercepta Slope

Municipality ha (S.E.) % (S.E.) P (>|t|) ha/year (S.E.) %/year (S.E.) P (>|t|) R2

Washington 4934 (96) 30.63 (0.59) 0.000 23.9 (6.5) 0.15 (3.65) 0.001 0.357
Anne Arundel County 7365 (307) 6.83 (0.29) 0.000 75.5 (21.0) 0.070 (0.02) 0.001 0.350
Baltimore 8274 (153) 39.25 (0.73) 0.000 11.7 (10.5) 0.06 (0.05) 0.275 0.049
Calvert County 933 (67) 1.65 (0.12) 0.000 11.5 (4.6) 0.02 (0.01) 0.019 0.210
Charles County 1861 (143) 1.56 (0.12) 0.000 32.7 (9.8) 0.03 (0.01) 0.003 0.318
Howard County 2666 (104) 4.06 (0.16) 0.000 65.3 (7.1) 0.10 (0.01) 0.000 0.780
Montgomery Countyb 7034 (257) 5.46 (0.20) 0.000 91.7 (17.6) 0.07 (0.01) 0.000 0.531
Prince George's County 9485 (359) 7.51 (0.28) 0.000 108.2 (24.5) 0.09 (0.02) 0.000 0.448
St. Mary's County 2163 (139) 2.27 (0.15) 0.000 −1.5 (9.5) −0.000 (0.01) 0.877 0.001
Arlington 1707 (50) 25.23 (0.74) 0.000 6.0 (3.4) 0.09 (0.05) 0.090 0.115
Alexandria 1288 (32) 32.80 (0.82) 0.000 1.2 (2.2) 0.03 (0.06) 0.586 0.013
Fairfax 330 (10) 20.06 (0.59) 0.000 2.4 (0.6) 0.15 (0.04) 0.001 0.352
Fairfax County 8694 (317) 8.45 (0.31) 0.000 163.9 (21.7) 0.16 (0.02) 0.000 0.704
Falls Church 100 (4) 19.38 (0.76) 0.000 0.7 (0.3) 0.13 (0.05) 0.021 0.203
Fredericksburg 311 (14) 11.39 (0.53) 0.000 8.5 (1.0) 0.31 (0.04) 0.000 0.755
King George County 454 (38) 0.95 (0.08) 0.000 5.9 (2.623) 0.01 (0.01) 0.034 0.174
Manassas 450 (18) 17.38 (0.68) 0.000 11.2 (1.2) 0.43 (0.05) 0.000 0.781
Manassas Park 58 (4) 9.04 (0.59) 0.000 4.6 (0.3) 0.72 (0.04) 0.000 0.930
Stafford County 971 (85) 1.37 (0.12) 0.000 36.8 (5.8) 0.05 (0.01) 0.000 0.629

a Years are adjusted so that the intercept is estimated at year 1984.
b Partial coverage in study area.
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land cover change records over long time scales (Goward et al., 2006;
Gutman & Masek, 2012). However, fitting individual models for each
place and time is simply too inefficient (and demanding of often
non-existent archival reference data) for long-term retrievals. Alter-
natively, extrapolation of robust models based on physically or statis-
tically normalized imagery is a much more practical approach for
extracting information from the full spatial and temporal extent of
the Landsat archive. Whereas most algorithm development to date
has focused on maximizing accuracy in relatively few points in time
so that traditional change detection methods may be employed, our
regression-based approach allowed continuous-field estimation and
statistical inference using nearly every year in a twenty-seven year
span.

Several factors enable use of Landsat data for long-term monitor-
ing of impervious surface dynamics. Of primary importance is the
United States' open-access data policy begun in 2009. Without inex-
pensive (or free) data, impervious and other land cover mapping ef-
forts would not have access to sufficient data volumes to fill cloud
gaps or remove phenological and atmospheric noise by high-volume
image compositing. Secondarily, reliable radiometric calibration, at-
mospheric correction, and phenological selection are required for
consistent extrapolation of models to locations and times not sam-
pled by reference data (Masek et al., 2006). Also, recent development
of image compositing techniques for Landsat data (e.g., Huang et al.,
2009a, 2009b; Roy et al., 2010) are necessary to dampen remnant
noise and identify the spectral and temporal signatures of impervious
or other surface materials.

The potential temporal domain of the specificmethod demonstrated
here is the era of Landsat-5 and Landsat-7 (i.e., from 1984 to the pres-
ent). With wider uncertainties, extension back to 1972 might be possi-
ble where sufficient Multi-Spectral Scanner (MSS) data are available
(and similarly forward to newer sensors), although methods must be
developed to extrapolatemodels between sensors. Due to themethod's
reliance on the phenological discrimination of impervious surfaces, the
potential spatial domain of the method is confined to humid temperate
biomes, where rapid vegetation regrowth distinguishes intermittently
bare soil frompersistently bare urban surfaces. The approach is less like-
ly to provide accuracy in arid, alpine, or otherwise sparsely vegetated
regions. Ultimately, however, this—and any other—empirical method
requires high-quality reference data with adequate sampling over
space and time to represent the range of conditions within the domain
of extrapolation. For this, there is no better source of information than
themunicipalities who record impervious surface coverage for the pur-
poses of storm-water management and taxation.

The primary impediment to observing rapid changes in our time
series was imprecision of impervious cover estimates in the temporal
dimension. Although the pattern of cover was consistent across space
in any year, temporal trajectories of cover in any selected region
exhibited oscillations that cannot plausibly be attributed to real
change (Fig. 9). These errors could be reduced statistically, by increas-
ing sampling of training data in the temporal domain, removing noise
from the estimates and increasing model variance. However, given
the consistency of the oscillation, there is likely a physical explanation
for the phenomenon. Landsat-5 orbited on a cycle repeating approx-
imately every six years (not including adjustments), similar to the
frequency of the observed oscillation. This suggests the possibility of
Bidirectional Distribution Function (BRDF) effects. BRDF effects have
been observed in Landsat across space (Danaher et al., 2001), but
only recently have the data become sufficient to detect BRDF effects
over time. To ensure the precision of Landsat measurements in time
as well as space, this is an area of research which should be explored.

Remaining uncertainty notwithstanding, the multi-temporal accu-
racies yielded by temporal compositing in this study are comparable
to those reported for static and coarse time-serial maps in similar envi-
ronments (Jiang et al., 2009; Yang et al., 2003, 2009). However, some
known challenges still remain. These include: generalization of rules
for phenological selection and compositing of images, analysis and pre-
diction of errors in locations and years not sampledwith reference data,
and development of change-detection methodologies that make use of
both continuous-scale data and estimates of uncertainty. Similar issues
challenge efforts to monitor forest cover (e.g., Hansen et al., 2010;
Huang et al., 2009a, 2009b; Kennedy et al., 2010; Sexton et al., 2013;
Townshend et al., 2012), and so there is much room formutual learning
and advancement between these closely related fields of study.

4.3. A call for long-term, consistent records of land-cover change

Long-term records of impervious surface cover have great potential
for application among urban growthmodelers andmanagers of policies
governing land-use change, as well as ecologists, hydrologists, and
economists studying the effects of urbanization on physical, biological,
and socio-economic systems. Rich in theory but relatively poor in



Fig. 10. Impervious surface development of Fredericksburg, VA from 1985 to 2010. The
circa-2010 municipal boundary is outlined in white. Note that reference data were not
available either within the spatial extent or any of the years presented.
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data, each of these groups is currently forced to base inference on
uni-temporal, or at best coarsely multi-temporal, databases. In the so-
cial sciences, inferences are commonly drawn by comparing a few, in-
tensively studied case studies representing different scenarios (Turner
et al., 2007), and similar limitations underlie the “space-for-time substi-
tution” commonly employed in ecology (Pickett, 1989) and “paired
watershed” studies in hydrology. Although recent studies based on
multi-temporal landcover maps have shown accelerating rates and
shifting patterns of development (e.g., Whitehurst et al., 2009; Yin et
al., 2011)—patterns that require at least three observations in time—
there are currently no consistent long-term records of land cover to
support more powerful inferential approaches.

Efforts to produce the needed datasets, primarily in the area of
forest-cover change, are now underway (Cohen et al., 2010; Huang
et al., 2009a, 2009b; Kennedy et al., 2010). As these data improve,
their primary use will likely continue to be for simple inventories of
land cover change, but their denser (i.e., ~annual) temporal sampling
will increase scientists' ability to observe the complexities of coupled
human–natural systems. This will certainly precipitate more sophisti-
cated socio-economic and ecological models, tighter correlation with
other spatio-temporal datasets, and ultimately greater understanding
and management of coupled human–natural systems. Already, a
growing number of social scientists, ecologists, and physicists are co-
ordinating their efforts to better understand these systems (Daily &
Matson, 2008), and it is the responsibility of the remote sensing com-
munity to provide them with the long-term, consistent records need-
ed for progress.

5. Conclusion

We have developed a method for retrieving retrospective continu-
ous fields of impervious surface cover at 30-m spatial resolution and
annual interval from the Landsat-5 archive, from approximately 1984
to 2010. Our results depict the heterogeneous and nonlinear growth
of impervious surfaces among the municipalities of the Washington,
D.C.–Baltimore, MD metropolitan region, corroborating and refining
the spatial, temporal, and thematic resolution of well-known patterns
of urban growth and development. Technically, our results demonstrate
that robust estimation and long-term retrieval of impervious cover in
humid–temperate (i.e., seasonally vegetated) regions is possible using
multi-temporal, multi-spectral (i.e., Landsat-class) data. Of critical
importance is maintaining the representativeness of the training sam-
ple over space and time, which requires knowledge of vegetation sea-
sonality and recovery from disturbance. Practically, the long-term,
high-resolution datasets retrieved by this method enable change detec-
tion at arbitrary temporal intervals, as well as observation of long-term
acceleration of land-use change. They will thus be of great use to ecolo-
gists, hydrologists, and social scientists studying human–environment
interactions in urbanizing ecosystems.
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