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LINK TO ABSTRACT

Anthropometry is the study of the measurements and proportions of the
human body. It is widely accepted that for practical purposes anthropometry is the
most useful tool for assessing the malnutrition status of children (WHO 1986).
Malnutrition is responsible for 45 percent of all deaths among children worldwide
(Black et al. 2013). In 2017, acute malnutrition (wasting) menaced over 50 million
young children while over 150 million young children suffered from chronic
malnutrition (stunting) (UNICEF, WHO, and the World Bank 2018). Even a small
change in child malnutrition rates can have major consequences in terms of lives
saved or lost. The financial and human costs associated with the practice of
anthropometry can be enormous. In 2014 alone, global donors disbursed nearly
$937 million in nutrition-specific programing (KFF 2016). According to Meera
Shekar et al. (2017), to achieve the World Health Assembly global nutrition targets,
the world needs to invest $70 billion over 10 years in high-impact nutrition-specific
interventions.

The two most widely studied expressions of anthropometric indices are
weight-for-height (WHZ) and height-for-age (HAZ) z-scores (de Onis and
Habicht 1996; UNICEF et al. 2018). These z-scores express anthropometric
measurements in terms of standard deviations below or above a reference
population value. A z-score is the difference between a particular child’s measure-
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ments and the mean value of comparable children from a reference population,
divided by the standard deviation of that reference population (WHO 1995). Z-
scores require a well specified reference population with a normal distribution, a
condition which would imply that z-score cutoff values for stunting, wasting, or
underweight are stable across different reference populations.

However, many practitioners operate under the assumption that the
standard deviation (SD) of a survey’s anthropometric indices is a necessary and
sufficient measurement for quality control (QC).2 The practice is particularly
persistent for anthropometric surveys within the field of childhood malnutrition,
with particularly grievous consequences. In one typical article, the quality control
maxim for z-scores states, “summary statistics can be compared with the reference,
which has an expected mean Z-score of 0 and a SD of 1.0 for all normalized
growth indices” (Mei and Grummer-Strawn 2007, 441). Others suggest that if a
survey presents with “an excessive standard deviation…the survey results should
be rejected” (Grellety and Golden 2016). The maxim is certainly simple, but does
its simplicity compensate for its disadvantages?

Suppose you wish to conduct an anthropometric survey across the Karamoja
region of northeast Uganda to assess the health of the region’s children. Your well-
designed survey includes measurements of height, weight, and age from a sample
of children. You combine the measurements to make anthropometric indices of
health such as weight-for-height and height-for-age. After performing some
rudimentary summary analysis, you discover the sample standard deviations of the
survey indices are (for example) 1.3 times greater than those of the 2006 World
Health Organization (WHO) reference standards, which is not surprising given
that the two groups of children come from two distinctly different populations.
However, the quality control maxim used by many anthropometric researchers
would dismiss your Karamoja survey as low quality, simply because the standard
deviations are 1.3 times greater than the 2006 WHO reference standards.

Anthropometric research generally works with z-scores, however, and the
practice that I am objecting to is expressed in terms of z-scores, not sample
standard deviations. Couched in terms of z-scores, the nature of the putative
quality control requirement is a bit harder to understand. But it is really as simple

2. Exactly how many is up for debate and a potential direction for future research. Suffice it to say the
number is large. If one is unfamiliar with this particular body of literature or the day-to-day pragmatics of
organizations working in this field, then the SD as QC problem might not seem endemic. But much like
dust in the air, to borrow a metaphor, SD as QC seems invisible—even if you’re choking on it—until you
let the sun in. Then you see it’s everywhere. A collection of quotes from this search is provided in Appendix
A to help illuminate the extent, certainly representing only a small sample of all the potential articles and
reports. Not to mention the many unreported, unknown, and unknowable studies that never saw the light
of day because of internal or external suppression for having supposedly overly large standard deviations.
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as the Karamoja example: when the ratio of standard deviations (of the sample
and a reference) is in excess of a fixed threshold (e.g., 1.3) the study fails the
quality control test. It can be shown that an anthropometric survey has a z-score
standard deviation of 1.3 (or any other arbitrary cutoff value) if and only if the sample
standard deviation of the anthropometric index is 1.3 times that of the standard
deviation of the reference population. From a mathematical standpoint, a claim
about the standard deviation of a z-score is equivalent to a claim about the ratio of
an index’s sample standard deviation to that of a reference population. For a proof,
see Appendix B.

The notion that I wish to challenge is the following: Any anthropometric
survey and subsequent z-score index (e.g., height-for-age or weight-for-height)
not normally distributed with a standard deviation of approximately 1.0 (e.g., 1.3)
indicates a serious problem and should be considered unusable.3 And I suggest
there is neither statistical justification nor scientific evidence that supports the SD
as QC maxim.

There are, of course, inaccurate surveys that deserve to be dismissed.
Garbage in, garbage out. Wariness is appropriate, but tests and conditions other
than a standard deviation threshold must be applied. For example, the United
States Agency for International Development (USAID) identify 26 potential
indicators that could measure anthropometry data quality during fieldwork (Allen
et al. 2019). WHO recommends considering several indicators such as population
characteristics, sample size, survey design, measurement methods, and missing

3. Although the maxim is widely practiced, it is not always consistent. WHO suggests the z-score
“distribution should be relatively constant and close to the expected value of 1.0 for the reference
distribution” (1995, 218). De Onis and Blössner, citing WHO (1995), claim good quality SD ranges of
HAZ (1.10 to 1.30), WAZ (1.00 to 1.20) and WHZ (0.85 to 1.10) and state these values are “the expected
ranges of standard deviations of the z-score distributions for the three anthropometric indicators” (1997,
51). De Onis and Blössner also state that “[a]ny standard deviation of the z-scores above 1.3 suggests
inaccurate data” (ibid.). Golden and Grellety suggest “The spread of the standard deviations…was small;
ranging from 0.8 to 1.2 in 95% of the surveys” (2002, 5). Grellety and Golden, citing WHO (1995) and
Golden and Grellety (2002), state “the SD for Weight-for-Height (WFH) should be between 0.8 and 1.2
Z-score units in all well-conducted surveys, with about 80% between 0.9 and 1.1Z” (2018, 2). Mei and
Grummer-Strawn, citing WHO (1995), present the same example z-score table of HAZ (1.10 to 1.30),
WAZ (1.00 to 1.20) and WHZ (0.85 to 1.10) and claim these values are a “recommendation from a WHO
expert panel” as the “ranges for data quality assessment” (2007, 445). Mei and Grummer-Strawn (2007)
also suggest the ranges for data quality assessment should be wider, given by HAZ (1.35 to 1.95), WAZ
(1.17 to 1.46) and WHZ (1.08 to 1.50). We are told by USAID “that high quality anthropometric data
should be normally distributed with a standard deviation of approximately 1” (2016, 15). But later USAID
informs us that “very large standard deviations, for example greater than 2, might be a sign of poor quality”
(ibid.). Bilukha et al., citing WHO (1995) and WHO and UNICEF (2019), give the recommendation that
“Absent measurement error, distributions are expected to be approximately normal with a SD close to 1”
(2020, 2). However, Bilukha et al. choose the exclusion criteria of “greater than 1.8 or lower than 0.8” (2020,
3).
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data (WHO 1995). WHO and UNICEF (2019) suggest performing a seven-point
data quality assessment, which interprets and reports: completeness; sex ratio; age
heaping; height and weight digit preference; and z-score implausibility, standard
deviations, skewness and kurtosis. And Nandita Perumal et al. (2020) have
implemented this suggestion to its fullest potential.

Emmanuel Grellety and Michael H. Golden (2016) highlight random
measurement, digit preference, and rounding error as potential sources of error.
David A. Siegel and Jacob S. Swanson (2004) warn against heaping and digit
preference. Researchers should also look out for confounding effects, specification
error, non-linearity, bias of the auspices, measurement error, experimental error,
and sample selection bias. Others point out that there is not even a consensus in
the literature as to what constitutes a usable dataset (Crowe et al. 2014; Waterlow et
al. 1977; USAID 2016). Shireen Assaf, Monica T. Kothari, and Thomas W. Pullum
(2015) say the need for well-defined quality assessment criteria remains unmet, and
they recommend more training and better equipment in the meantime.

In their methodological guidelines for assessing nutrition in crisis situations,
the SMART (Standardized Monitoring and Assessment of Relief and Transitions)
inter-agency initiative recognized that survey samples do not follow reference
standards, and that even “the standard population is not normally distributed”
(2006, 24 n.9). Later, however, the guidelines rely on the SD as QC maxim, claiming
bias “can be estimated from examination of the standard deviation of the WFH,
which should always be 0.8–1.2 z-scores” (ibid., 38).

Inspection of surveys for small SD remains in many QC recommendations
(e.g., Allen et al. 2019; SMART 2006; WHO and UNICEF 2019) as a necessary
if not sufficient condition for acceptance, while for others it is even a sufficient
condition (e.g., Bilukha et al. 2020; Grellety and Golden 2016; 2018; Mei and
Grummer-Strawn 2007). I propose that SD is neither a necessary nor sufficient
indicator of QC. Low-quality surveys can have small SD, and high-quality surveys
can have large SD. Errors of commission and omission waste precious resources
that are already spread thin. The disregarding of surveys with high standard
deviation could result in funds and research being syphoned away from the people
most in need. It is my aim to illustrate the archival, statistical, logical, theoretical,
and practical evidence that standard deviation should serve as neither a necessary
nor a sufficient arbiter of quality control.

Unsound beginnings
It was sculptors and painters who first measured the relative proportions

of the human form (Tanner 1981). Scientific study of the measurements of the
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human body emerged notably with the work of Adolphe Quételet in 1832. Much
like contemporary practitioners, Quételet performed a cross-sectional study of the
height and weight of newborns and children, and observed a likeness between the
distribution of weight and height to a normal (Gaussian) distribution (Quételet
1832; 1835). This Quételet Index, later redubbed Body Mass Index, is still relevant
today. Unlike Quételet, however, contemporary practitioners have transposed his
observation, and adopted the quality control practice of judging a survey based on
its likeness to a standard normal distribution.

The source of the misconception originates in a presentation at the 15th
International Congress of Nutrition in 1993 by Ray Yip. Despite its later impact on
the literature, the SD as QC proposal does not even appear in the summary of the
workshop, including Yip’s abstract (Yip 1993). But two years later the WHO issued
a technical report titled Physical Status: The Use of and Interpretation of Anthropometry
that many have cited as the origin of and authority for the SD as QC maxim.

In less than one page of a 463-page report, some of the most recurrent
maxims are found. WHO (1995) outlines several steps involved in assessing the
quality of anthropometric data, including the observed standard deviation of the
z-score distribution. With accurate measurements, the report claims, the
“distribution should be relatively constant and close to the expected value of 1.0 for
the reference distribution” (WHO 1995, 218). Citing the 1993 conference abstract,
the report presents a table of “the standard deviations of the height-for-age,
weight-for-age, and weight-for-height z-score distributions” all ranging “within
approximately 0.2 units of the expected value” (WHO 1995, 218). The table of
values include: HAZ (1.10 to 1.30), WAZ (1.00 to 1.20), and WHZ (0.85 to 1.10).
The expected value of 1.0, the range of plus or minus 0.2 units, and the specific
table values have all been widely cited as criteria by which to judge a survey’s quality
(e.g., Blanton and Bilukha 2013; Bilukha et al. 2020; de Onis and Blössner 1997;
Grellety and Golden 2018; Mei and Grummer-Strawn 2007; SMART 2006; WHO
and UNICEF 2019).

WHO (1995) presents the table of SD ranges only as an example that was
observed during multiple large-scale Centers for Disease Control and Prevention
(CDC) surveys presented once at a conference. The range of plus or minus
approximately 0.2 units is merely a generalization they ascribe to the example
surveys. In fact, WHO (1995) goes on to say that in some surveys the observed
standard deviations ranged from 1.4 to 1.8, even after excluding extreme outliers.
The specific SD values were not given in WHO (1995) as QC ranges as many have
claimed (e.g., Grellety and Golden 2018; Gupta et al. 2020; Castro Bedriñana and
Chirinos Peinado 2014; Kwena et al. 2003; Jacob et al. 2016; Mei and Grummer-
Strawn 2007; Wijaya-Erhardt 2019).

The report does suggest a SD > 1 could be an indicator of inaccuracy, but the
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notion was couched in a larger discussion of indicators, including validity of the
reference population, the notorious quality of age estimates, errors of rounding and
digit bias, number of missing and improbable values, and overall data compilation
and documentation. Standard deviation is but one potential indicator, of many,
to flag surveys for further inspection, not a sufficient measure of quality (WHO
1995). And the report recommends: “Verification of accuracy is best done by
remeasurement of a sub-sample of the original sample by individuals who are fully
qualified in anthropometric procedures” (WHO 1995, 216). In other words,
standard normal SD is certainly not a sufficient QC condition.

Soon after, Mercedes de Onis and Monika Blössner (1997) echoed the SD
as QC maxim as a definitive fact of nutrition surveys in their report WHO Global
Database on Child Growth and Malnutrition, which many have cited as the source of the
idea. In particular, de Onis and Blössner claim:

If the surveyed standard deviation of the Z-score ranges between 1.1 and 1.2,
the distribution of the sample has a wider spread than the reference. Any
standard deviation of the Z-scores above 1.3 suggests inaccurate data due to
measurement error or incorrect age reporting. (de Onis and Blössner 1997, 51)

The first sentence is referring to the survey data compared to the reference data. It is
only making general statements about how variance and spread can be described
for any two distributions of data. The second sentence, however, jumps to the
conclusion that a z-score standard deviation above 1.3 “suggests inaccurate data.”

Without question, z-score summary statistics can indicate community-wide
malnutrition; that is their function. As de Onis and Blössner state earlier “if a
condition is severe, an intervention is required for the entire community, not just
those who are classified as ‘malnourished’ by the cut-off criteria” (1997, 50). That
is to say, when analyzing z-scores, if many observed z-scores are well below the
reference, then one might conclude that the appropriate intervention mechanism
should be aimed at the population, and not the individual level. This is a sensible,
if tautological, suggestion. But the inverse is not necessarily true. Namely, if you
do not observe a standard normal distribution of z-scores shifted in mean only,
then you conclude that none of the population has been affected and the sample is
simply of low quality.

It seems obvious that a population by definition will not move together as a
whole. We know that low-income families are more vulnerable to price volatility
and uncertainty because they have fewer options, entitlements, and capabilities
(Sen 1984). Calorie elasticity is not zero (Subramanian and Deaton 1996). Low-
income families spend a large percentage of income on food, making them more
vulnerable, thus skewing the distribution asymmetrically.
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Larger z-score SD implies larger spread implies inaccurate data: simple but
unsatisfying. I have not found substantiating evidence or theoretical justification
for the maxim—in de Onis and Blössner (1997) in particular or the literature in
general. But what I have found is a history of citations built upon a shaky
foundation.

In my estimation there are really only two studies which one could argue have
attempted to show evidence or justification for SD as QC, if only tangentially. The
first comes from a conference paper presented at the Standardized Monitoring and
Assessment of Relief and Transitions (SMART) Workshop, July 23–26, 2002. At
the workshop Michael H. Golden and Yvonne Grellety presented a working paper
in which they claim to disprove the assertion that “social heterogeneity would
lead to changes in the shape of the distribution curve of acute malnutrition when
a population is exposed to famine” (2002, 3). And through their analysis they
conclude that “there was no change in the spread of wasting within the population
as it became more malnourished” (ibid.).4

The findings of the Golden and Grellety (2002) working paper rest largely
on Kolmogorov-Smirnov tests. In this case, the null hypothesis claim is that
heterogeneity of wasting (i.e., z-score distribution curve) is heteroscedastic and the
goal of the test is to falsify that claim. Their objective is to prove distributional
spread (i.e., SD) is independent, stable, and standard normal (i.e., close to 1.0)
as populations are exposed to starvation and famine (i.e., changes in average z-
scores). And as an extension of their Kolmogorov-Smirnov test, they suggest SD is
a measure of QC, stating:

If a survey is observed to differ significantly from normality or have a large
standard deviation, then we suggest that either two distinctly different
populations may have been included in the sample or there is methodological
error. All surveys should be checked for normality and any difference
investigated. (Golden and Grellety 2002, 10)

But the specific Kolmogorov-Smirnov tests that Golden and Grellety (2002)
devise assume the data are normally distributed from the start. In this case the
null hypothesis is not heterogeneity, but that z-score distribution curves are in fact
normal. Furthermore, Thomas Bayes (1763) taught that it is incorrect to assume
Pr(Data|H0) = Pr(H0|Data). And testing for normality is not equivalent to testing
a unit SD. We are also not provided the power of the tests (i.e., the probability of
correctly rejecting the null hypothesis), making it difficult for one to judge a null
hypothesis false when it is false.

4. Emmanuel Grellety and Michael Golden (2018) stipulate that these findings confirm that SD should be
between 0.8 and 1.2 z-score units in all well-conducted surveys.

QUALITY CONTROL IN ANTHROPOMETRY

VOLUME 18, NUMBER 1, MARCH 2021 101



Finally, in their figures, they purport that mean and standard deviation are
uncorrelated. But if two random variables are statistically uncorrelated, that does
not imply they are independent—yet it is independence that they seek. In addition,
they show that kurtosis varies from −0.75 to 1.75 decreasing as wasting escalates,
and skewness varies from −0.5 to 0.75 increasing as wasting escalates, contradict-
ing the claim that malnutrition prevalence remains fixed and normally distributed.

In my estimation, even if Golden and Grellety (2002) had shown what they
intended, it is still a great leap to conclude that therefore standard deviations are
a necessary and sufficient quality control measure. The link is missing. Many
alternative hypotheses still exist. As Deirdre N. McCloskey and Stephen T. Ziliak
point out, “Failing to reject does not of course imply that the null is therefore
true. And rejecting the null does not imply that the alternative hypothesis is true:
there may be other alternatives which would cause rejection of the null” (1996,
102).And elsewhere, Golden concedes: “Most experimental studies do not include
the acutely ill children for ethical reasons; the children are studied after they have
recovered from acute infections and other major complications” (2009, S280).
The esteemed pediatrician James Tanner knew in 1952 that unhealthy populations
could be non-Gaussian and skewed; as such, standard deviations may be biased and
not locate the right points (Tanner 1952).

The second study comes from an article by Zuguo Mei and Laurence M.
Grummer-Strawn (2007). Mei and Grummer-Strawn claim to “assess whether the
SD of height- and weight-based Z-score indicators derived from the 2006 WHO
growth standards can still be used as data quality indicators,” finding “the SD
for all four indicators were independent of their respective mean Z-scores across
countries” (Mei and Grummer-Strawn 2007, 441). They conclude that “the SD
of Z-scores could still be used as a data quality indicator for evaluation of
anthropometric data” (ibid., 445).

Again, WHO (1995, 218) presents a table of z-scores with different ranges
of distribution values (i.e., HAZ 1.10 to 1.30, WAZ 1.00 to 1.20, and WHZ 0.85
to 1.10). However, as I hope I have illustrated, the table is presented only as an
example of observed ranges. And the standard deviation z-score ranges were never
meant for data quality assessment, nor has SD ever been shown to be a sufficient
QC indicator.

But the point is lost in Mei and Grummer-Strawn (2007), who submit that
WHO (1995) recommended “standard deviation ranges for data quality assess-
ment” and claim to assess “whether these Z-score ranges still apply.” I suggest
they never did. Mei and Grummer-Strawn even concede that “the observed ranges
of SD for all four indicators from our analysis were consistently wider than those
recommended by WHO” (2007, 441). Yet these specific values were never given in
WHO (1995) as the acceptable range for good quality surveys.
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Citing WHO (1995), Mei and Grummer-Strawn assert that:

On the basis of the 1978 WHO/National Center for Health Statistics (NCHS)
growth reference, WHO has previously indicated that the SD of Z-scores
of these indicators is reasonably constant across populations, irrespective of
nutritional status, and thus can be used to assess the quality of anthropometric
data. (Mei and Grummer-Strawn 2007, 441)

I think it is telling that they point to the 1995 technical report instead of pointing
to John C. Waterlow et al., who were the actual developers of the WHO/National
Center for Health Statistics (NCHS) growth reference5 and who warned against
universal principles: “Decisions of this kind have to be taken locally, and it is
not possible to make international recommendations about them” (Waterlow et
al. 1977, 491). Indeed, we need to make judgments backed up by logic, theory,
and evidence, and not follow a binary decision rule that lacks contextual nuance.
Waterlow et al. affirm that sub-populations are heterogenous, imploring us to make
judgments on a case-by-case basis:

Clearly, if there were differences dependent on different gene distributions,
then the target for one population would not be the same as the target for
another. … Because the reference population cannot be used as a universal
target, the question of what is a realistic goal in any particular situation does
become important. (Waterlow et al. 1977, 490)

The purpose of Waterlow et al. was to “present recommendations for the
analysis and presentation of height and weight data” (1977, 489), not to present
ways to exclude such data. All constraints that Waterlow et al. do propose are
wholly directed at constructing a reference population. Whereas a standard represents
a desirable target or norm, the sole aim of a reference is to be a common basis in order
to group, analyze, and compare different populations (WHO 1995). Unfortunately,
the distinction between references and standards was, and continues to be,

5. In 1971, as part of a long tradition for child growth references, the Maternal and Child Health Program,
the United States Public Health Service, and the American Academy of Pediatrics concurred that more
rigorous standards were needed for clinical characteristics of early childhood malnutrition. This decision
was the impetus for the Health and Nutrition Examination Survey carried out by the Centers for Disease
Control and Prevention’s National Center for Health Statistics Task Force. First released in 1977, the
National Center for Health Statistics Growth Curves were a combination of data from the National Center
for Health Statistics’ Health Examination Surveys, the Health and Nutrition Examination Survey, and
the Fels Research Institute. Wanting in on the action, a WHO working group on nutritional surveillance
made recommendations on the criteria for the anthropometric reference population and presented
recommendations for the analysis of data from surveys involving nutrition and anthropometry, thus the
“WHO/National Center for Health Statistics” growth reference.
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indifferently heeded and left in unclarity.
The 1978 WHO/NCHS growth reference is distinct in its purpose and

function from the 2006 WHO Multicentre Growth Reference Study (MGRS)
growth standards. And neither can inform, through comparing standard deviations,
whether or not any particular sample is of poor quality. But Mei and Grummer-
Strawn assert that, “our analysis confirms the WHO assertion that the SD remains
in a relatively small range for each indicator” (2007, 445). To do so, however, is to
conflate standards, references, and samples.

In 1993, the Expert Committee on Physical Status, convened by WHO,
concluded that previous reference growth charts had long been misconstrued as a
standard for growth (de Onis and Habicht 1996). As a result, the WHO Multicentre
Growth Reference Study was implemented between 1997 and 2003. The designers
of the new Growth Reference were intentionally prescriptive rather than descriptive
(Garza and de Onis 2004). They designed a growth chart for how children should
grow rather than how children actually grow. In other words, it was purposely
designed to produce an idealized standard rather than a baseline reference.

Even the initial sample data for the Multicentre Growth Reference Study
did not have small and well-behaved standard deviations. To produce the growth
standards, the sample was manipulated to fit specific distributional requirements
(WHO 2006). And even though the MGRS sought out the healthiest, most ideal
population to measure, 93 percent to 69 percent of the healthy populace were
ineligible and did not conform to this ideal.6 In other words, even in the healthiest

6. The Multicentre Growth Reference Study (July 1997–December 2003) consists of both cross-sectional
and longitudinal surveys from six cities: Davis, California, USA; Muscat, Oman; Oslo, Norway; Pelotas,
Brazil; in select affluent neighborhoods in Accra, Ghana; and South Delhi, India (WHO 2006). The
distributions of children across the different survey countries for the longitudinal component are: 119
USA; 149 Oman; 148 Norway; 66 Brazil; 227 Ghana; and 173 India. The distributions of children across
the different survey countries for the cross-sectional component are: 476 USA; 1,438 Oman; 1,385
Norway; 480 Brazil; 1,403 Ghana; and 1,487 India. Prior to constructing the standards, if a child was 3
SDs above the sample median or 3 standard deviations below the sample median they were excluded.
For the cross-sectional sample the truncation procedure was even stricter. If a child was 2 SDs above
the sample median or 2 SDs below the sample median they were excluded. Children were selected for
inclusion based on: no known health or environmental constraints to growth, mothers willing to follow
feeding recommendations, no maternal smoking before and after delivery, single term birth, and absence
of significant morbidity. Of the 13,741 children screened for the longitudinal survey, less than 7 percent or
882 children (428 boys and 454 girls) were eligible and included in the final study. In addition, of the 21,520
children screened for the cross-sectional survey, less than 31 percent or 6,669 children (3,450 boys and
3,219 girls) were eligible, and included in the final study. In other words, 69 to 93 percent of the populace
did not fit the standard. After selective sampling and exclusion, the sample was exceedingly skewed to the
right (WHO 2006). To rectify the non-normality, the data were cleaved at the median, and then reflected
to create two symmetrical distributions. Each mirrored distribution was used to derive standard deviation
cut-off values (e.g., what is the severe wasting cutoff value where a WHZ score is less than 3 SDs from the
median) for the respective upper and lower portions of the data.
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and most ideal sub-populations, most children do not fit the growth standards, nor
are they normally distributed with standard deviations close to one. The MGRS
provided a growth standard intended for measuring benchmark distances from
an idealized healthy child. It is not the only permittable distribution for a sample
dataset nor is it relevant for measuring data quality.

Spurious theory and flawed logic
SD as QC may be believed by some to be loosely related to the seminal

concepts of the eminent epidemiologist Geoffrey Rose, whose ideas transformed
the strategy of preventive medicine. Central to Rose’s analysis was an assumption
that the width of the distribution of a variety of biological measures remains similar
across different populations even as the mean of the distribution shifts: a mean-
centric view of population (Rose 1992). He observed that most risk-factor
distributions across populations appear to have uniform displacements, with risk
changing the same amount at different parts of the risk-factor distributions. Rose’s
assumption implies that the mean of a distribution can be used as a proxy for a
population’s intrinsic traits.

But it is an untenable leap to go from Rose’s notion that distributions of
biological measures tend to have consistent spread, independent from the central
tendency, to the misconception that any distribution of a biological measure that
does not have a small and precise spread is invalid, inaccurate, and not insightful.
Furthermore, Rose’s conceptualization is anchored on the cohesiveness of popula-
tions, an assumption that may be violated by differential changes in the BMI
distribution occurring globally within populations (Razak, Davey Smith, and
Subramanian 2016).

Contrary to theoretical and observational expectations, some have claimed
whole population distributions shift equally in the face of malnutrition stressors
and that any data set which does not behave that way (i.e., any data set with z-score
standard errors not equal to one) must be a low-quality survey (e.g., Blanton and
Bilukha 2013; Bilukha et al. 2020; de Onis and Blössner 1997; Golden and Grellety
2002; Grellety and Golden 2016; Grellety and Golden 2018; Mei and Grummer-
Strawn 2007). But the assertion remains unsubstantiated. If true, it would follow
that whenever there was a famine (malnutrition stressor) anywhere in the world,
you sitting at the breakfast table, drinking your coffee, oblivious to the famine,
would also become slightly malnourished, too, to maintain a normally distributed
population with a standard deviation of one. We all must move together to preserve
the spread of the distribution, you see. Now, presumably, the SD as QC crowd
would say that interpretation is preposterous, and that mean shifts in z-scores
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do not occur for the entire planet but are only applicable to some smaller sub-
population. Ah, then, by ‘shifts in the population,’ they don’t really mean the
Population. Okay, but they still have to contend with the problems of sorites and the
fallacy of the transposed conditional (on that fallacy, see here or Appendix C).

If the effect is only valid for some sub-population then the boundaries of
that sub-population must be defined, and the sub-population is by definition not
representative of the whole population. So we should not be casual in talking
of ‘populations.’ The meaningfulness of descriptive statistics depends on how
meaningfully a population is defined in relation to the inherent intrinsic and
extrinsic dynamic generative relationships by which they are constituted (Krieger
2012).

Prevalence and distributions of z-scores are therefore highly reliant on
boundary definitions and cannot be extrapolated out of sample. Remember, too,
that the ‘reference population’ used for judging a child’s health is really a standard
and by design a small sub-population of only the healthiest of healthy children.
And, even still, those ‘standard’ children were not distributed standard normal with
an SD of one (WHO 2006). There is no reason to believe that a healthy sub-
population should behave the same way a malnourished sub-population does.

Standard deviation is merely the measure of dispersion for a set of values,
unlike digit preference (heaping at 0 and 5), incompleteness (missing values),
rounding errors (chop vs. nearest), data formatting (short, long, float, double),
transposition and transcription errors (obvious typos), or procedural errors (e.g.,
a child measured lying down when they should have been standing), which are
all direct quality control metrics of a specific error. For example, the standard
deviation of WHZ only gauges the ratio of the weight-for-height sample standard
deviation to that of the weight-for-height standard deviation of a reference
population. The reference population (even if it is a standard) cannot signify
anything qualitative about the sample data, nor should it. A reference population is
merely a datum or a fixed point. It is a quantitative scale not a qualitative apparatus.

Measurement errors might generate inflated SD. Then again, they might not.
Inflated SD does not necessarily imply measurement error (Biehl et al. 2013;
Ulijaszek and Kerr 1999). The quality control maxim poses the prior “if the
population is distributed normal, then the observed data will be distributed
normal,” and supposes wrongly “if data is observed, then the population it is drawn
from is distributed normal.” If H, then O, does not affirm if O, then H. It is the
same as thinking if a person is hanged, then he will probably die; therefore, if
observing a corpse, then one should conclude he was probably hanged (Ziliak and
McCloskey 2008, 17).

Random errors lower precision by inflating confidence intervals. Random
error is but one of many dozens of errors and seldom the biggest (Ziliak and
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McCloskey 2008). It is systematic errors that we should be worried about. They
cause bias. Especially when the costs of failure (i.e., child mortality) are high, the
choice between low bias or low precision is not really a choice at all. If I can’t
be precisely right, I would rather be generally right than precisely wrong. More
importantly, Ziliak and McCloskey note “sampling precision says nothing about
the oomph of a variable or model” (2008, 25).

Systematic errors may even attenuate SD. A small spread in SD is not a
necessary condition for a lack of systematic error, making SD a poor metric from
which to judge quality. Suppose, for example, I performed an especially erroneous
survey of child anthropometry in which instead of actually measuring different
weights and heights, I just marked down the exact same value for every survey
participant. Is my systematic measurement error captured by an inflated standard
deviation? No. Obviously, this is an extreme and absurd example. But there exists a
non-zero proportion of the total sample space in which systematic errors diminish
rather than inflate standard deviation. Try to imagine the countless number of
possible surveys with less extreme systematic error structures, all of which exhibit
‘a standard deviation of approximately one.’ If it is systematic errors that we are
concerned with, SD signifies very little.

The obverse problem with SD as QC remains, too. Since Anscombe’s
quartet and the more recent Datasaurus Dozen, students of statistics have long
known that different datasets with wildly varying graphical distributions can all
have the exact same descriptive statistics, including standard deviation (Anscombe
1973; Matejka and Fitzmaurice 2017). Logic dictates SD is neither a necessary nor
sufficient indicator of QC.

Informed dissent from the maxim
The debate surrounding standard deviation as a quality control metric is

ongoing and unresolved. After two national nutrition surveys in Nigeria exhibited
divergent estimates, both USAID and United Nations Children’s Fund (UNICEF)
staff in-country felt that substantial quality problems must exist in either one or
both surveys (USAID 2016). In July 2015, the USAID Nutrition Division
convened a technical meeting aimed at resolving the issues of accuracy and
comparability of anthropometric data. Participants included representatives from
USAID, CDC, UNICEF, WHO, the Pan American Health Organization, and
external nutrition experts. The meeting report highlights that the importance of
standard deviations for measuring data quality was a major point of contention.
The report concludes that “there was no agreement on what is a reasonable
standard deviation of z-scores to expect in heterogeneous populations” (USAID
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2016, 17).
The meeting report features arguments for the SD as QC maxim given by

an unspecified presenter from the CDC. In reference to the Demographic and
Health Surveys, the CDC presenter asserted that high-quality anthropometric data
will always be normally distributed with a standard deviation of approximately one
regardless of population heterogeneity, and that a standard deviation greater than
one must mean the data are of poor quality (USAID 2016, 16). One example they
pointed to was the National Health and Nutrition Examination Survey in the
United States with a (recent) stable trend of small standard deviations. Further-
more, they claimed the shape of the distribution does not change as a population
becomes more malnourished, concluding there is no relationship between the
mean z-score and standard deviation. In their estimation, this lack of relationship is
sufficient to conclude standard deviation is a quality control metric.

The report suggests, however, that not all participants agreed with the SD
as QC maxim. Some participants felt that standard deviations greater than one
could reflect heterogeneity in the population. For the Demographic and Health
Surveys in particular, they expressed concern regarding the emphasis on standard
deviations of height-for-age, weight-for-age, and weight-for-height z-scores close
to one as an indication of quality. The report details that other participants noted:

In Kano state, Nigeria, for example, a majority of the within-cluster standard
deviations were below 1, however, the average standard deviation in Kano
state was more than 1. If the states are different, it is impossible for the
standard deviation to be 1 in every state, and 1 for the country as a whole.
(USAID 2016, 17)

Other researchers acknowledged that the Demographic and Health Surveys
in particular did show the most variability in parameters such as standard deviation.
But they also noted that the Demographic and Health Surveys Program has the
largest number of surveys and covers the largest span of time; standard deviations
may have changed with time as nutritional status of the populations changed or
improved. One meeting facilitator affirmed that it is not true that the shape of
the distribution does not change as nutritional status of the population changes.
While others pointed out that in terms of the factors that influence anthropometric
indicators (e.g., water, sanitation, and food security), the United States may be more
homogeneous than other countries (e.g., India) (ibid., 16).

Given that standard deviations capture inherent population heterogeneity,
there is no reason to assume that the standard deviation will be the same across
all surveys. It is true that poor data quality could inflate the standard deviation
of anthropometric measures, but given that anthropometric z-scores are biologic
parameters, one would anticipate some population heterogeneity both within and
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between countries, even in situations of high-quality data collection.
The Joint FAO/WHO Expert Committee on Nutrition (1971) noted that

statistical evaluation cannot by itself distinguish between what is normal and
abnormal in the biological sense. Even seminal author and pediatric expert Dr.
Derrick Jelliffe (1966) emphasized the problems and difficulties of non-sampling
errors, which cannot be detected with tests of sampling errors. And Jonathan
Gorstein et al. (1994) noted that when the nature of a nutrition problem is unclear,
it should be interpreted within the situational context.

Standard deviation is not indicative of quality control for some studies. There
are researchers and journals confident enough in the quality of their findings even
with standard deviations not approximately one. Yirgu Fekadu et al. (2015) found z-
score standard deviations of 1.3 (weight-for-height), 1.33 (height-for-age), and 1.06
(weight-for-age) in Ethiopian children. Michel Garenne et al. (2009) found weight-
for-height z-score standard deviations of 1.28 and 1.398 for Niakhar, Senegal, and
Bwamanda, D. R. Congo, respectively. Afework Mulugeta et al. (2010) observed
z-score standard deviations of 1.8 (height-for-age), 1.3 (weight-for-age), and 1.3
(weight-for-height) for children in northern Ethiopia.

In addition, Paul B. Spiegel et al. (2004) performed a meta-analytical quality
assessment of anthropometric surveys with no mention of standard deviation.
Daniel E. Roth et al. (2017) estimated that across 64 low- and middle-income
countries, when mean height-for-age z-scores were zero, the standard deviation
was 2.10 (95% CI 2.00 to 2.20), far above most QC thresholds. Examining mid-
upper arm circumference (MUAC) for 852 cross-sectional nutritional surveys of
children, Severine Frison et al. (2016) found that only 319, or 37.7 percent, follow a
normal distribution.

In his survey of famines and economics, Martin Ravallion remarks on the
unusual nature of malnourished communities: “I will say that a geographic area
experiences famine when unusually high mortality risk is associated with an
unusually severe threat to the food consumption of at least some people in the
area” (1997, 1205). The phenomenon of malnutrition is by its very nature unusual,
i.e., not normal. It would be bizarre to think that measures would behave the
same in lean times as in abundance. In their appraisal of different anthropometric
indices, André Briend et al. get to the heart of the matter when they observe “for
most populations, little information is available on the amount of nutritional
change one has to expect in a community and also on the standard deviations of
some nutritional indices” (1989, 770).
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Eschew the maxim
The SD as QC maxim is built on a history of shaky citations, corroborated

with imprudent tests, substantiated by logical fallacies, and endorsed inconsistently
by empiricists. It lacks archival, statistical, logical, theoretical, and practical merit.
Of course, there are inaccurate surveys and samples that don’t deserve our
consideration, but other tests and conditions must be adopted.

Once the SD as QC maxim is abandoned, the therapeutic and ameliorative
next step is more difficult. But good science is difficult. If it were easy, it would have
already been done (Wasserstein, Schirm, and Lazar 2019). Good science embraces
the explicable and ineffable (McCloskey 1994). Doing serious scientific inquiries
calls for serious thinking about what makes a dataset ‘good’ or ‘bad’ and how its
‘goodness’ may impact the results. We need to consider the dozens of sources of
real error, and reckon their effects on our results. As Ziliak and McCloskey put
it, “After all, reconciling differences of effect, finding the common ground, is the
point of statistics. … Most important is to minimize Error of the Third Kind, ‘the
error of undue inattention’” (2008, 246).

Appendix A
SD as QC in the literature

The practice of SD as QC is pervasive, almost to the point of being a norm or
a given first principle of the field were citation and evidence are not required. And
I believe that the SD as QC maxim is preventing more studies and surveys from
being used and published. In Google Scholar, Mei and Grummer-Strawn (2007) are
cited over 170 times, not to mention the over 8,950 articles citing WHO (1995) or
the 760 citing de Onis and Blössner (1997). Clearly not all are relevant to the SD
as QC discussion. To help illustrate the point I spent an afternoon tracking down
articles that explicitly and openly abide by the SD as QC maxim in some form or
another. Below are excerpts from a sample of 32 articles citing Mei and Grummer-
Strawn (2007) where authors point to the SD as QC maxim. I have put some words
in boldface for emphasis.

“Researchers also have analyzed ways in which use of the WHO standards
might affect prevalences of wasting, stunting, and underweight worldwide, as well
as the distribution of z scores, a commonly used indicator of data quality in
international surveys” (Grummer-Strawn, Reinold, and Krebs 2010, 13).
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“Accepted best practices for field-level quality control were followed.
Systematic repeat data entries were done for all anthropometric data. Postanalysis
quality checks compared SDs of anthropometric data by site to WHO
standards and other studies for children <2 y of age” (Remans et al. 2011, 1636).

“There were another 5,010 children whose length-for-age z-scores (LAZs)
were flagged in the DHS data files either as missing or as biologically implausible
according to the WHO flags (Mei & Grummer-Strawn, 2007). These children
were excluded from the analysis. We also removed 71 children whose mothers
had a height of less than 130 cm, as these were considered to be implausible and
likely due to measurement or recording errors” (Krasevec et al. 2017, 2).

“z score SDs were within the valid range accepted by the World Health
Organization (WHO)” (Corvalán et al. 2009, 548).

“Summary statistics showed that standard deviations of the three indices Z
score (weight for age, height for age and weight for height) were between 0.92 and
1.03, indicating high quality data” (El Mouzan et al. 2008, 339).

“The data were subjected to post-hoc methods of quality determination, and,
if of suitable quality, included in the adequacy evaluation. … Accepted practices
for field-level quality control were followed. However, systematic repeat measures,
repeat sampling and inter-lab sampling were not available for quality control of the
MICAH data. Therefore alternative, post-hoc methods were used for evaluating
the quality of data collected. Some of these methods have been used previously,
whereas others were developed for the purpose of this evaluation. … Comparison
of magnitude of SDs of continuous variables to SDs in other, well-controlled
studies… This method of comparing SDs with reference populations has
been recommended for anthropometrics. We assume that common levels of
variations will exist for other variables. … SDs of continuous variables in MICAH
surveys in baseline (1996 or 1997), follow-up (2000) and endline (2004) compared
with examples from the literature, for quality control purposes” (Berti et al. 2010,
613, 617, 618).

“In the analysis, plausibility of anthropometric Z scores were checked using
the WHO protocol recommendations (2006), which provide standard deviation
cut points for anthropometric Z-scores as a data quality assessment tool”
(Abate and Belachew 2017, 6).

“Mei and colleagues previously reported a lack of a relationship between
SD and mean HAZ across DHS surveys; however, they did not quantitatively
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assess the change in SD with the age-related decline in mean HAZ, and they
interpreted their findings only as a justification for using SD as an indicator
of anthropometric survey quality” (Roth et al. 2017, e1255).

“Mei and Grummer-Strawn [2007] supported the use of SD as a quality
indicator for anthropometric data” (Afifi et al. 2012, 2655).

“In our opinion reports from surveys with an SD of more than 1.2 are
unreliable. … An analysis of DHS and MICS shows elevated SD values with all
of the mean SDs outside the acceptable range; none of mean SDs for any of
the surveys was less than 1.0Z. In agreement with the data from West Africa, the
5th and 95th centiles of the SDs of 51 recent DHS surveys were HAZ 1.35–1.95;
WAZ 1.17–1.46, and WHZ 1.08–1.50. Mei & Grummer-Strawn conclude that
they ‘concur with the WHO assertion that SD is in a relatively small range’”
(Grellety and Golden 2016, 19).

“Before turning to multivariate regressions, we relate our results to two
indicators of measurement error used in previous work. The first step is to compare
our December–January gap with the SD of HAZ. The SD of HAZ could reflect
genuine dispersion related to health inequality but is widely used as an indicator
of survey errors in both height and age (Assaf et al. 2015; Mei and Grummer-
Strawn 2007)” (Larsen et al. 2019, 716–717).

“Standard recommendations state that a standard deviation of greater
than 1.3 for HAZ reflects excessive random variation in either height
measurements or age estimates. The standard deviation of HAZ in the three DHS
greatly exceeds this threshold for data quality; however, this recommendation is
based on the use of the old NCHS:CDC:WHO reference population. There is
evidence that standard deviations for HAZ greater than 1.3 are common in DHS in
other countries and may be normal when using the WHO Child Growth Standard
(Mei & Grummer-Strawn 2007)” (Woodruff et al. 2017, 15).

“Many DHS surveys have standard deviations greatly exceeding the
quality criteria defined by the World Health Organization. … Ranges are then
used to describe the overall quality of the survey and arbitrary cut-offs are used to
decide whether the data are acceptable or not” (Tuffrey and Hall 2016, 4–5, 14).

“We calculated z-score standard deviations (SD) and analyzed SD disaggre-
gated by age (under and over two years of age) to determine if the quality of
measurements differed by age. … We can consider z-score standard deviation to
illustrate the importance of reaching consensus on interpretation and action. WHO
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and the US CDC promote the use of normative ranges of SD to determine if survey
quality is acceptable, but the ranges are based on surveys that have evidence of
poor data quality. The most recent DHS data quality assessment showed that 30 of
52 countries had HAZ SD greater than 1.5, but only one country suppressed data
because of poor quality. According to SMART data quality is not acceptable
if HAZ SD is above 1.2, and a recent modeling study showed that SD of 1.5
can result in substantial overestimation of stunting prevalence. Meanwhile, the
published normative range for HAZ SD that some organizations use to deem data
quality acceptable is 1.35–1.95” (Conkle et al. 2017, 5, 10).

“Few studies have assessed the distribution of WFH. Two looked at the
standard deviations of the WFH distributions. In 1977, Waterlow et al. showed
that the WFH distributions were skewed at the upper centiles. Their analysis
was performed on data from surveillance or surveys involving nutrition and
anthropometry in young children up to the age of 10 years. In 2006, Mei et al.
analysed data from 51 DHS surveys representing 34 developing Countries. They
found a mean WFH and SD WFH (z-scores) of 0.06 and 1.40 respectively. The
mean ranged from −0.91 to 0.83 and the SD range [sic] from 1.03 to 1.55. They
concluded that their analysis confirms the WHO assertion that the SD
remains in a relatively small range (i.e. close to SD from a standard normal\
distribution), no matter the Z-score mean although the observed range of SD for
was [sic] consistently wider” (Frison et al. 2016, 7).

“Summary statistics showed SDs of the 3 indices’ Z score (weight for age,
height for age, and weight for height) between 0.92 and 1.03, indicating high-
quality data” (El Mouzan et al. 2009, 68).

“Previous research has demonstrated that Z-scores within a population are
normally distributed with a SD of approximately 1.0; the shape of the distribution
does not vary based on the nutritional status of the population, as measured by the
mean Z-score. Based on the finding that SD remains in a relatively narrow range
for each indicator regardless of mean Z-score, WHO guidance recommends
that the SD of Z-scores can be used as a data quality indicator as well as a
measure of variability. The introduction of random non-directional errors, such
as those introduced when age is estimated rather than calculated or when teams
are imprecise in measuring height or weight, can result in wider SD relative to
the acceptable ranges outlined by WHO. … We therefore included SD of the
Z-scores to assess the degree to which data quality in addition to variability
impact DEFF in anthropometric surveys. … The SD of WHZ and WAZ were
approximately 1.00, as expected in high-quality anthropometry surveys (WHZ
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median = 1.03, WAZ median = 1.04)” (Hulland et al. 2016, 2–3, 10).

“Anthropometry data quality indicators were extremely high (median
SDs for weight-for-length, length-for-age and weight-for-age z-scores 1.01, 0.98,
and 1.03, respectively), likely due to extensive training, standardization, and moni-
toring efforts. … Anthropometry data quality indicators were monitored through-
out the study. The medians of monthly standard deviations for weight-for-length,
length-for-age, and weight-for-age z-scores were 1.01, 0.98, and 1.03, respectively;
close to the expected value of 1.0 for a reference distribution. Standard devia-
tions for z-scores varied month-to-month, but never reached the WHO thresholds
for measurement error or incorrect age reporting” (Aceituno et al. 2017, 2, 8).

“The standard deviations reported in this study are much lower than the
suggested standard deviations reported by Mei and Grummer-Strawn estima-
tions in a cross-country analysis” (Sharma et al. 2020, 17).

“We also examined the quality of the 2009 data by assessing the SD as a
quality indicator for anthropometric data (Mei and Grummer-Strawn 2007) and
examining whether or not age heaping was evident. These assessments did not
reveal any concerns” (Boylan et al. 2017, 2261).

“Based on the WHO Technical Report, the SD for Weight-for-Height
(WFH) should be between 0.8 and 1.2 Z-score units in all well-conducted
surveys. This has been confirmed empirically with well conducted surveys in both
the developed world where large national surveys of heterogeneous populations
have been conducted, for example the National Health and Nutrition Examination
Survey (NHANES) from USA’s National Centre for Health Statistics (NCHS) and
the developing world. … The SD of organisation “t” differs significantly from the
others (Student’s t test < 0.0001), with 69% (53/77) of their surveys for WHZ
having an SD of more than 1.2 Z. … For most anthropometric measurements the
SD from single surveys should lie between 0.8 and 1.2, with about 80% between 0.9
and 1.1Z. For these reasons the SD has been used as a useful measurement of
data quality” (Grellety and Golden 2018, 2, 3, 10).

“The median SD and range for HAZ were greater overall and across all sur-
veys than for WHZ. The absolute difference in HAZ by MOB of age reporting
should be close to 0 if there is no systematic error in age reporting, but was 0.25 (in
z score units) overall and up to 0.90 in Timor-Leste in 2009. … HAZ SD and WHZ
SD had the highest factor loadings in the data quality indices indicating that SD is
an important measure of anthropometric data quality” (Perumal et al. 2020,
809S, 812S).
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“Absent measurement error, distributions are expected to be approximately
normal with a SD close to 1. … To exclude surveys with exceptionally poor
anthropometry data quality or where data manipulation might be suspected, we
excluded from analysis surveys where the SD for WHZ, WAZ, HAZ, or
BMIZ was outside of the following empirically defined cutoffs: greater than
1.8 or lower than 0.8; or the SD for MUACZ greater than 1.8 and less than 0.7”
(Bilukha et al. 2020, 2, 3).

“Anthropometric data collected during the 2008 to 2009 and 2014 Kenya
surveys were reanalyzed to assess standard parameters of quality: standard
deviation, skewness, and kurtosis of z-score values for 3 anthropometric indicators
(weight for height, height for age, and weight for age)… The primary objective of
the comparative analysis was to observe the quality of anthropometric variables.
The first metric of quality, standard deviation, is presented in Table 3. … One
key measure is SD of the continuous z-score distributions. As noted, previous
research suggests that for a given population, Z-scores are normally distributed
with an SD of approximately 1.0” (Leidman et al. 2018, 406, 412, 414).

“Careful interpretation is required, as the standard deviations for our
anthropometric measurements are outside the World Health Organization range
for data quality assessment purposes” (Bennett et al. 2020, 2038).

“Note that the standard deviations (SD) of WHZ and MUACZ in all rounds
are near or even below 1.0, which gives us confidence in the quality of the
anthropometric data (Grellety and Golden 2016b; Mei and Grummer-Strawn
2007). The average SD—across all four survey rounds—is 1.03 for WHZ and 0.95
for MUACZ” (Ecker et al. 2019, 10).

“Seventeen surveys had large standard deviations (SD) for HAZ, which
could result in attenuated regression coefficients when HAZ was used as an
explanatory variable in regression analyses. To avoid attenuation, HAZ values for
each child were adjusted to obtain a standard deviation for HAZ of 1.2 for each
of these surveys by subtracting the survey mean for HAZ, dividing by the survey
SD for HAZ, multiplying by 1.2, and then adding back the survey mean for HAZ”
(Frongillo et al. 2017, 3038).

“The World Health Organization (WHO) has recommended the use of Z-
score of these indicators to classify nutritional status, given the constancy of their
values, independent of nutritional status, and can even be used as indicators of the
quality of anthropometric data” (Martins et al. 2010, 1106).
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“Z-score plausibility was determined using WHO cutoffs. We used the
following WHO-defined standard deviation (SD) ranges to assess the quality
of data (HAZ 1.1–1.3, WAZ 1.0–1.2, and WHZ 0.85–1.1)” (Gupta et al. 2020, 2–3).

“…as per WHO standards. Some individuals may have met >1 exclusion
criterion” (Varghese and Stein 2019, 1208).

“Protocol used for obtaining data was an adaptation of that published by
Lapham et al. and Mei et al.” (Samiak and Emeto 2017, 2).

“Studies investigating the quality of the DHS data report the quality to be
good (Mei Z and Grummer-Strawn LM., 2007, Mishra et al., 2006)” (Reda and
Lindstrom 2014, 1160).

Appendix B
Z-score SD Proof

The aim here is to move away from the convoluted discussion of z-scores
and standard deviations of z-scores to simply anthropometric index measurements
and standard deviations of anthropometric index measurements. To make this
simplification I will show that a z-score standard deviation is equivalent to the
ratio of standard deviations of an anthropometric index to that of the reference
population. The standard deviation of a given survey’s anthropometric index is
calculated as:

sx = √ 1
N − 1∑i = 1

N (xi − _x )2

where:

• sx: anthropometric index sample standard deviation
• N: is the number of children in the sample
• xi: is a child’s anthropometric index value (e.g., weight-for-height)

• _x : is the anthropometric index sample average given by:
_x = 1

N∑i = 1
N xi

A z-score tells you how many standard deviations away an individual data
value falls from the mean. It is calculated as:
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Zi =
(xi − μ)

σ

where:

• Zi: is a child’s z-score
• xi: is a child’s anthropometric index value (e.g., weight-for-height)
• μ: is the reference mean
• σ: is the reference standard deviation

A given survey’s z-score standard deviation is calculated as:

sZ = √ 1
N − 1∑i = 1

N (Zi − −Z )2

where:

• sZ: z-score sample standard deviation
• N: is the number of children in the sample
• Zi: is a child’s z-score

• −Z : sample average z-score given by −Z = 1
N∑i = 1

N Zi

Thus, we are left with the question: Is the statement, if an anthropometric survey
has a z-score standard deviation greater than 1.3 it fails the test, equivalent the statement,
if the sample standard deviation of an anthropometric index is 1.3 times that of the standard
deviation of the reference population it fails the test? Or in other words, is the ratio of
the sample standard deviation of (weight-for-height) to the reference population
standard deviation of (weight-for-height) equivalent to the standard deviation of
(weight-for-height) z-scores.

Claim:

√ 1
N − 1∑i = 1

N (Zi − −Z )2
= √ 1

N − 1∑i = 1
N (xi − _x )2

σ

Squaring both sides and reducing gives:

∑i = 1
N (Zi − −Z )2

= 1

σ2∑i = 1
N (xi − _x )2
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Note xi is a random variable and μ and σ are constants such that

Zi =
(xi − μ)

σ = −μ
σ + 1

σxi is a linear transformation of the form Zi = a + bxi.
If Zi = a + bxi then,

E[Zi] = E[a + bxi] = a + bE[xi] = a + b_x

and

Var[Zi] = Var[a + bxi] = b2σx
2

where

1
N∑i = 1

N (Zi − −Z )2
= σZ

2 = Var[Zi]

and

σx
2 = 1

N∑i = 1
N (xi − _x )2

giving

1
N∑i = 1

N (Zi − −Z )2
= σZ

2 = b2σx
2 = b2 1

N∑i = 1
N (xi − _x )2

Note for our purposes b = 1
σ such that b2 = 1

σ2 giving

1
N∑i = 1

N (Zi − −Z )2
= 1

σ2
1
N∑i = 1

N (xi − _x )2

which reduces to

∑i = 1
N (Zi − −Z )2

= 1

σ2∑i = 1
N (xi − _x )2

QED.
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Appendix C
The fallacy

The fallacy of the transposed conditional, also known as confusion of the
inverse or the statistical equivalent to the fallacy of affirming the consequent, is the
jumbling of the probability of a set of data given a hypothesis, and the probability
of a hypothesis given a set of data.

In statistical terms, the fallacy of the transposed conditional is corroborated
through Thomas Bayes’ (1763) theorem, given by:

Pr(A | B) = Pr(B | A)Pr(A)
Pr(B)

where A and B are two different outcomes or events (i.e., a hypothesis and a data
set) and Pr(B) ≠ 0. Therefore, we can see Pr(A | B) = Pr(B | A) holds true if and
only if Pr(A) = Pr(B) at the same time.

It is a fallacy if one claims to test the likelihood of a null hypothesis assuming
the data are true, if what is actually tested is the likelihood of the data assuming the
null hypothesis is true. It is incorrect to assume Pr(Data|H0) = Pr(H0|Data).

In terms of rhetoric and logic, the fallacy of affirming the consequent is
stated:

P → Q, Q
∴ P

where one takes the true statement P → Q and incorrectly concludes the converse
Q → P to be true. In plain terms, the fallacy is demonstrated with the simple and
absurd statement: All dogs are animals; therefore, all animals are dogs.
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