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Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future
disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in
separating burning from other types of forest damage in satellite data. We developed a new approach, the
Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and
spectral information frommulti-year time series of satellite data. The BDR approach identifies understory fires
in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years
following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was
applied to time series of Landsat (1997–2004) and MODIS (2000–2005) data covering one Landsat scene
(path/row 226/068) in southern Amazonia and the results were compared to field observations, image-
derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was
essential for detection of burn scars b50 ha, yet these small burns contributed only 12% of all burned forest
detected during 1997–2002. MODIS data were suitable for mapping medium (50–500 ha) and large
(N500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore,
moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon
forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 km2)were
an order of magnitude higher than during the 1997–1998 El Niño event (124 km2 and 39 km2, respectively),
suggesting a different link between climate and understory fires than previously reported for other Amazon
regions. The results in this study illustrate the potential to address critical questions concerning climate and
fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.
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1. Introduction

Fire is an important cause of tropical forest degradation with
myriad impacts on forest structure, biodiversity, and nutrient cycling
(Cochrane, 2003; Goldammer, 1990). In Amazonia, forest fires occur
when human ignitions for deforestation or land management escape
their intended boundaries and burn into neighboring forest areas
(e.g., Cochrane et al., 1999; Uhl & Buschbacher, 1985). Understory
forest fires are surface fires that burn leaf litter and coarse woody
debris in both logged and intact Amazon forests (Balch et al., 2008;
Holdsworth & Uhl, 1997; Matricardi et al., 2010; Souza et al., 2005a).
Damages from understory fires in tropical forests can be severe,
reducing species richness by 30% and above-ground live biomass by
up to 50% (Cochrane & Schulze, 1999). Even moderate-intensity
understory fires can result in high canopy mortality, as few Amazon
forest species have fire-adapted traits (Uhl & Kauffman, 1990).
Widespread forest fires in Amazonia were reported during drought
conditions associated with the El Niño Southern Oscillation (ENSO) in
1997–1998 (Alencar et al., 2006; Barbosa & Fearnside, 1999; Elvidge
et al., 2001; Phulpin et al., 2002), yet the interannual variation in
burned forest extent remains uncertain due to difficulties in
separating fires from other forest damages using satellite data.

http://dx.doi.org/10.1016/j.rse.2011.03.002
mailto:douglas.morton@nasa.gov
mailto:rd2402@columbia.edu
mailto:jnagol@geog.umd.edu
mailto:souzajr@imazon.org.br
mailto:ekasisch@mail.umd.edu
mailto:george.hurtt@unh.edu
mailto:dubayah@umd.edu
http://dx.doi.org/10.1016/j.rse.2011.03.002
http://www.sciencedirect.com/science/journal/00344257


1707D.C. Morton et al. / Remote Sensing of Environment 115 (2011) 1706–1720
Fire, selective logging, and deforestation are related and often
sequential forest disturbances in dynamic Amazon frontier landscapes
(Alencar et al., 2004; Asner et al., 2006; Matricardi et al., 2010;
Nepstad et al., 1999; Souza et al., 2005a; Uhl & Buschbacher, 1985).
Thus, isolating the unique contribution from fire to forest degradation
requires reconciling the spatial and spectral similarities among
disturbance types in satellite imagery (Fig. 1). Detecting understory
forest fires is further complicated by the partial or complete
obscuration of actively burning fires and burn damages by intact
forest canopies. Previous methods to map understory forest fires in
Amazonia have combined field data with high-resolution imagery
from a single date to identify canopy damage from fire in near-real
time (Brown et al., 2006; Elvidge et al., 2001; Phulpin et al., 2002) or
during the subsequent dry season (Alencar et al., 2004; Cochrane &
Fig. 1. Aerial photographs from the Mato Grosso study region depicting canopy damage
from roads and log landing areas (patios) for selective logging (top), understory forest
fires (middle), and deforestation for agricultural use (bottom) in 2007. Photo credit:
Alberto Setzer, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos,
SP, Brazil.
Souza, 1998; Matricardi et al., 2010; Pereira & Setzer, 1993; Souza
et al., 2005a). However, single-date methods are ill-equipped to
separate fire-related canopy damage from conventional logging and
deforestation that may be spectrally similar in any given year (e.g.,
Cochrane et al., 1999; Souza et al., 2005a, 2005b). Changes in forest
structure remain visible for several years following fire exposure
(Cochrane & Souza, 1998; Souza et al., 2005b), whereas canopy
closure removes evidence of most logging within one year (Asner
et al., 2004; Souza et al., 2005b) and deforestation for pasture or
cropland remains cleared following forest conversion (Morton et al.,
2006), introducing the possibility that a method based on satellite
image time series over three or more years may aid the separation of
disturbance types in Amazonia.

Time series of satellite imagery have been used to map burned
forest at a range of spatial and temporal scales (e.g., Anderson et al.,
2005; Barbosa et al., 1999; Giglio et al., 2009; Kasischke & French,
1995; Lopez Garcia & Caselles, 1991; Roy et al., 2002; Viedma et al.,
1997). In most biomes, multiple images within a single season can
accurately track the timing and extent of vegetation fires, but
approaches based on frequent observations have lower performance
in tropical forest regions due to persistent cloud cover and subtle
changes in surface reflectance associated with sub-canopy burning
(Eva & Lambin, 1998; Giglio et al., 2009; Roy et al., 2008), except
during drought conditions (Shimabukuro et al., 2009). Evidence of
forest disturbance and recovery in time series of annual or biannual
Landsat imagery has been used to identify forest fires in northern
Spain (Viedma et al., 1997) and logging activity in North America
(Kennedy et al., 2007). Souza et al. (2005b) documented a similar
trajectory of loss and recovery of green vegetation fraction over four
years following fire in an Amazon forest. Building on these efforts,
we designed a multi-year, time-series approach to differentiate
canopy damage related to understory fires from other forest
damages. Throughout the manuscript, we refer to the reduction in
live canopy cover from understory forest fires in intact or logged
forests as fire-damaged forest. The extent of fire-damaged forest
may differ from the actual burned area in regions with little or no
canopy damage following an understory fire. However, one
advantage of our method is that reductions in live canopy cover
over large, contiguous areas can be more easily identified using
optical remote sensing data than the spectral characteristics of ash
or charred vegetation that may be obscured by remaining live
canopy trees and understory vegetation following fire in Amazon
forests.

This paper describes the development of the Burn Damage and
Recovery algorithm (BDR) to map the annual extent of canopy
damage from understory fires in Amazonia based on the unique
trajectory of disturbance and recovery for fire-damaged forests in
time series of dry-season imagery. We applied the BDR algorithm to
time series of Landsat andMODIS data to compare the ability to detect
forest fire damages in imagery with different spatial resolutions.
Landsat data (30 m) are an important intermediary between field
information and MODIS data because higher-resolution data allow
detection of small forest disturbances and visual confirmation of field
locations. Advantages of 250 mMODIS data for time series processing
and burn detection include reduced data volumes, consistent data
quality (e.g., atmospheric correction, accurate geolocation, and data
compositing to reduce cloud cover), and more homogenous depiction
of canopy damage thatmay facilitate automated detection approaches
and regional-scale studies. The goals of this study were three-fold:
1) to evaluate the accuracy of the BDR approach for mapping fire-
damaged forest using field validation data and independent, satellite-
based estimates of selective logging and deforestation, 2) to
determine what size burned scars are appropriate for detection with
moderate and high-resolution data, and 3) to estimate the interannual
variability in fire-damaged forest area in ENSO and non-ENSO years
during 1997–2002 for a study region in southern Amazonia.
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2. Methods

2.1. Study area

We mapped the annual extent of canopy damage from forest fires
for a study area (Landsat scene 226/068) in central Mato Grosso state,
Brazil (Fig. 2). In the past decade, the region experienced high rates of
deforestation for cattle ranching and soybean cultivation (Morton
et al., 2005, 2006) and forest degradation from selective logging
(Asner et al., 2005; Matricardi et al., 2005, 2007; Souza et al., 2005b),
but the unique contribution from fire to forest degradation has
received less attention (Matricardi et al., 2010). The 29,275 km2 study
area was 77% forested in 1997 (N70% shade-normalized green
vegetation fraction, following Souza et al., 2005a) and lies predom-
inantly within the Xingu River basin near the southern extent of
Amazon forests. Rainfall in the study area is highly seasonal, averaging
1890 mm per year during 1998–2005 with b100 mm per month
during May–September based on data from the Tropical Rainfall
Measuring Mission (TRMM 3B343, Huffman et al., 2007). Prior to
analysis, topographic data (SEPLAN-MT, 2004) were used to exclude
1,450 km2 of water and seasonally-inundated vegetation for three
main tributaries of the Xingu River (Rio Manissuiá-Miçu, Rio Arraias,
and Rio Ferro) in order to avoid spurious errors associated with
interannual changes in river levels or unreliable vegetation index
values over water (Fig. 2).

2.2. Satellite-based measures of fire effects in Amazon forests

Canopy damage from understory fires in Amazon forests is highly
variable. Field studies suggest that understory fires may kill 6–44% of
trees N10 cm diameter at breast height, and canopy mortality is
typically higher in logged forests than in undisturbed forests (Balch
et al., 2008; Barbosa & Fearnside, 1999; Barlow et al., 2003; Haugaasen
Fig. 2. Landsat 1997 shade-normalized green vegetation (GVs) for the study region. Foreste
image. Tributaries of the Xingu River that were excluded from the analysis are outlined in w
the eastern extent of the Amazon Basin (gray outline).
et al., 2003; Holdsworth & Uhl, 1997; Ivanauskas et al., 2003; Pinard
et al., 1999). Canopy mortality from understory fire also exhibits fine-
scale spatial heterogeneity (see Fig. 1). Edaphic conditions and
differential mortality among tree species may partially explain these
patterns (Ivanauskas et al., 2003), although the distribution of leaf
litter and fine fuels may also be important for patterns of understory
burning and related canopy mortality in more seasonal Amazon
forests (Balch et al., 2008).

In the months following a fire, the patchy distribution of high and
low canopy damage areas from understory fires can be detected with
high-resolution optical remote sensing data (e.g., Fig. 1, Cochrane &
Souza, 1998; Souza & Roberts, 2005). Optical remote sensing data are
sensitive to changes in live canopy cover, consistent with field
measurements of canopy damages from understory fires. In the first
year following fire, Haugaasen et al. (2003) reported an increase in
canopy gap fraction from 5% to 19%, and Balch et al. (2008) measured
a 16% decline in LAI. Over longer time scales, delayed mortality of
large trees three or more years following fire has important
consequences for net carbon storage in Amazon forests (Barlow
et al., 2003). However, changes in surface reflectance from delayed
mortality of large trees are likely to be offset by a reduction in canopy
gap fraction from growth of remaining trees and recruitment of
new individuals in the years following fire damages (Barlow & Peres,
2008).

We derived two parameters of canopy damage from fire using high
and moderate resolution satellite data. Because the BDR algorithm
uses imagery from the early dry season to detect evidence of burning
from the previous year, this study mapped post-fire effects on canopy
trees and not burned area, per se (Lentile et al., 2006). Therefore, we
refer to canopy damage from understory fires as fire-damaged forest
area rather than burned area. The total fire-damaged forest area was
calculated as the sum of all pixels within the study area with canopy
damage from fire. Individual burn scars of different sizes were
d regions appear dark gray and deforested regions appear black in this early dry season
hite. Inset: the Landsat study area (black) in central Mato Grosso state (white) lies near

image of Fig.�2
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delineated from the map of fire-damaged forest area based on
contiguous patches of canopy damage. Given the fine-scale spatial
heterogeneity in canopy damage from fire observed in field and
satellite-based studies, burn scars derived from both high and
moderate resolution satellite data may include some fraction of
unburned forest within individual burn scars, while burned forest
areas that do not exhibit canopy damage may be excluded.

2.3. Data

We used a variety of data sources to build and test the BDR
algorithm for mapping the extent of canopy damage from fire. Below,
we describe the pre-processing steps to generate dry-season time
series of Landsat and MODIS data and the satellite and field data used
to calibrate the BDR algorithm. Section 2.4 provides a detailed
description of the BDR algorithm. Finally, Section 2.5 presents the
approach for validation of the satellite-based maps of canopy damage
from fire using field observations of burned forest, image-derived
validation data, and independent data products on selective logging
and deforestation.

2.3.1. Landsat TM 1997–2004
We used a time series of annual Landsat TM/ETM+ data (Table 1)

for the Mato Grosso study area to characterize patterns of disturbance
and recovery from fire at high resolution (30 m). Image preprocess-
ing, including georegistration and atmospheric correction, was
described in detail by Souza et al. (2005a). Briefly, reflectance values
in annual dry-season Landsat images from June–August of each year
(1997–2004) were normalized to one atmospherically-corrected
scene (1999), and a linear spectral mixture model with common
end members for green vegetation (GV), non-photosynthetic vege-
tation (NPV), shade, and soil was used to derive annual fraction
images and normalized difference fraction index (NDFI) data layers
(Souza et al., 2005a, 2005b). Images were co-registered to the 1999
ETM+ reference scene, with a root mean square (RMS) error b1 pixel
in all years (Souza et al., 2005a, 2005b). In this study, we analyzed
annual shade-normalized green vegetation fraction (GVs) data layers
from 1997 to 2004 following the calculation presented by Souza et al.
(2005a):

GVs =
GV

100−Shadeð Þ : ð1Þ

Souza et al. (2005a) showed that the GV fraction was best for
separating logged and burned forests, while the composite NDFI was
best for separating logged and intact forest classes:

NDFI =
GVs− NPV + Soilð Þ
GVs + NPV + Soilð Þ : ð2Þ
Table 1
Day of year for annual Landsat (scene 226/068) and MODIS 16-day composite data (tile
H12V10) in this study.

Year Landsat MODIS

Day of Year Sensor Day of Year

1997 217 TM5 –

1998 157 TM5 –

1999 231 ETM+ –

2000 178 TM5 129–225
2001 220 ETM+ 129–225
2002 191 ETM+ 129–225
2003 218 TM5 129–225
2004 157 TM5 129–225
2005 – – 129–225
2.3.2. MODIS 250 m dry-season mean NDVI 2000–2005
We constructed an annual time series of MODIS dry-season mean

normalized difference vegetation index (mNDVI) to detect evidence
of forest disturbance and recovery from fire at moderate resolution
(250 m). mNDVI data layers were produced by averaging dry-season
NDVI values from the Collection 4 MOD13 Q1 Vegetation Indices
(Huete et al., 2002). The MOD13 product is based on atmospherically-
corrected surface reflectance data (Vermote et al., 2002), and
MODIS has sub-pixel geolocation accuracy (Wolfe et al., 2002).
Annual mNDVI data values for each 250 m pixel were derived from
seven 16-day composite periods (day of year 129, 145, 161, 177, 193,
209, and 225) in order to 1) limit interference from clouds or biomass
burning aerosols typical of wet-season and late dry-season months,
respectively, 2) eliminate artifacts from new forest burning that
occurs during the late dry season, and 3) maintain consistent solar
illumination conditions relative to the June solstice to minimize the
impacts of seasonal changes in solar illumination on canopy
reflectance. Remaining cloudy or other low-quality data values
identified in the Quality Assurance data layer were replaced using a
local spline function based on remaining high-quality data values in
each pixel's time series (Morton et al., 2006) prior to averaging for
each annual mNDVI data layer for 2000–2005. Finally, in order to
evaluate evidence of fire damage in 2000 MODIS data from fires in
1999, all regions were assigned a forested mNDVI value in 1999
(mNDVI=0.85). Landsat-based results for fire-damaged forest during
1998 and 1999 were used to quantify the fraction of historic burning
from these years that was visible in the 2000 MODIS imagery.
2.3.3. Calibration data
We used existing satellite-based data products and field observa-

tions to assess the spatial and temporal patterns of forest disturbances
in time series of Landsat and MODIS data (Table 2). Forest damages
that occurred between 2002 and 2003 were selected for algorithm
calibration based on overlap with the MODIS era. Calibration data for
both logged forest and logged forests that subsequently burned were
identified using results from Souza et al. (2005a) and were visually
inspected to eliminate areas that were later deforested using data
from the PRODES (Monitoramento da Floresta Amazônica Brasileira
por Satélite) annual Landsat-based deforestation assessments (INPE,
2007). Field observations of intact forests in July 2005 were used to
identify forest areas that were not logged, burned, or cleared during
the combined Landsat and MODIS time series (1997–2005). Finally,
deforestation events N25 ha with post-clearing land use of either
pasture or cropland were selected to compare time series trajectories
among major classes of forest cover change within the study area
(INPE, 2007; Morton et al., 2006). Calibration data totaled approxi-
mately 100 km2 for each class (Table 2).

Calibration data were used to assess the separability of fire
damages from other unburned cover types based on the trajectory of
GVs and mNDVI over time (Fig. 3, Table 3). Similar vegetation
greenness among forest disturbance classes in individual years
highlights the value of a time series approach for isolating canopy
damages from fire in Amazonia (Fig. 3).

For example, in 2003, the range of mNDVI and GVs for burned
forests was similar to logged forests and deforestation for pasture.
However, the multi-year trajectory of burn damage and recovery is
unique (Fig. 3). Calibration data on burned forest were used to set the
transition rules for the trajectory of burn damage and recovery in the
BDR algorithm (Table 3). On a per-pixel analysis, the BDR trajectory
excluded N99.8% of calibration data for intact forest, logged forest, and
deforestation for cropland in time series of Landsat and MODIS data
(Table 4). A small fraction of calibration data for pasture deforestation
exhibited the BDR trajectory at Landsat (1.8%) or MODIS resolution
(4.2%). The BDR algorithm also uses spatial attributes (size and shape)
and spectral characteristics (mean greenness) of fire-damaged forest



Table 2
Data sources for calibration and validation of fire-damaged forest area derived from the BDR algorithm.

Class Calibration Validation

Source Year⁎ Area (km2) Source Year⁎ Area (km2)

Forest Field observations 2005 101.6 NA
Selective logging Souza et al., 2005a 2002 102.8 Asner et al., 2005 1999–2001 5932.3
Burned forest⁎⁎ Souza et al., 2005a 2002 105.2 Field observations; image-derived burn scars;

Landsat/MODIS inter-comparison
1999–2002; 1999;
1999–2002

144.7; 1767.9
⁎⁎⁎

Deforestation⁎⁎⁎⁎ INPE, 2007;
Morton et al., 2006

2002 Pasture: 89.6;
cropland: 91.6

INPE, 2007; Morton et al., 2006 2000–2002 1332.6

⁎ Deforestation and selective logging between annual images are assigned to the end image date by INPE (2007) and Asner et al. (2005), respectively. Fire-damaged forest areas
are assigned to the beginning date, since early dry-season imagery (May–June) captures evidence of burning from the previous dry season (August–September). For consistency, we
report all comparisons according to the year of forest burning from the BDR approach (e.g., year 1999=1999 fire damages and 2000 selective logging).
⁎⁎ Souza et al. (2005a) identified forest areas that were logged and subsequently burned. Field and image-derived forest burn scars used for validation were not necessarily logged

prior to burning.
⁎⁎⁎ Inter-comparison of annual high confidence fire-damaged forest area, total: Landsat (1879.8 km2), MODIS (3040.1 km2).

⁎⁎⁎⁎ A subset of INPE PRODES deforestation for 2002, classified according to post-clearing land use as pasture or cropland, was used for BDR calibration. Validation efforts
considered all deforestation during 2000–2002 (excluding the calibration subset), classified as cropland, pasture, or not in production (Morton et al., 2006).

1710 D.C. Morton et al. / Remote Sensing of Environment 115 (2011) 1706–1720
areas to isolate understory forest fires from other cover types, based
on calibration data at Landsat and MODIS resolutions.

2.4. Burn damage and recovery (BDR) algorithm

The BDR algorithm is a time-series approach to distinguish fire-
related canopy damage from selective logging and deforestation
(Fig. 4). The BDR algorithm is comprised of three main processing
components: Trajectory Analysis, Contextual Analysis, and Attribute
Analysis. During Trajectory Analysis, a moving 4-year window is used
to compare each pixel's time series of Landsat or MODIS observations
to the BDR trajectory to identify core areas of canopy damage from fire
each year. The BDR time series trajectory for fire-damaged forest
(Fig. 3, Table 3) is comprised of: 1) forested conditions in the year
prior to burning, 2) intermediate change in post-burn vegetation
greenness, relative to either logging or deforestation (0.75 years post-
fire), and 3) recovery of mNDVI or GVs values during subsequent
Fig. 3. Time series of annual mean±1 S.D. MODISmean dry-season NDVI (mNDVI, top left) an
data on intact, logged, and burned forest and deforestation for pasture and cropland during
Landsat (bottom right). Table 1 lists the area and data source for each class. Table 2 provide
years (1.75 and 2.75 years post-fire). Clusters of neighboring pixels
that satisfy all criteria for pre-burn, post-burn, and recovery elements
of the BDR trajectory and exceed the minimum size criteria are
considered core areas (Fig. 4). Tominimize confusion between canopy
damage from fire and selective logging, the BDR algorithm only
identifies core areas at Landsat resolution that are four times larger
(1.5 ha) than previously reported for log landing areas in selective
logging operations (0.4 ha) (Souza et al., 2005a). At MODIS resolution,
the minimum core area is 10 ha. Compared to a single image
classification or image differencing techniques, the BDR approach
provides 3+ observations to confirm the trajectory of burn damage
and forest recovery. We note that the BDR algorithm identifies fire-
damaged forests on a one year delay because at least one year of forest
recovery is required to confirm understory fire damages rather than
deforestation for agricultural use (see Fig. 3).

The second component of the BDR algorithm is Contextual
Analysis. During Contextual Analysis, core burned areas are grown
d Landsat shade-normalized green vegetation fraction (GVs, bottom left) for calibration
2002. Line plots show the mean trajectory for each class from MODIS (top right) and
s the percent of each calibration data set that was classified as a core area by the BDR.

image of Fig.�3


Table 3
BDR trajectory parameters for core and growth areas in dry-season imagery for pre and
post-burn periods. Limits for the BDR burn trajectories are depicted in Fig. 4, with years
1–4 corresponding to the annual intervals described below.

1. pre-burn
minimum

Drop (2–1)
minimum

2. post-
burn range

3. recovery
(1) minimum

4. recovery
(2) minimum

MODIS mNDVI (0–1)
Core 0.8 −0.05 0.7–0.8 +0.02
Growth 0.75 −0.01 0.65–0.83 +0.01 +0.01

Landsat GVs (0–100)
Core 75 −11 50–70 +6
Growth 70 −6 35–75 +5 +1

Fig. 4. The BDR algorithm has three main processing steps: 1) Trajectory Analysis:
MODIS and Landsat time series trajectories are used to identify candidate core areas of
canopy damage from fire (black) and growth regions (gray). Dashed lines show the
range of values for a 2-year recovery in growth regions. See Table 3 for pre-burn
(1), drop, post-burn (2), and recovery (3 and 4) parameter ranges for each BDR
trajectory. 2) Contextual Analysis: Large core areas (black) are joined to adjacent
growth areas (gray) to generate forest burn scars. 3) Attribute Analysis: individual burn
scars are classified as low confidence (LC) or high confidence (HC) based on spatial and
spectral metrics.
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into larger regions using a neighborhood search for adjacent pixels
that meet BDR trajectory criteria for growth regions (Table 4, Fig. 4).
Compared to core areas of canopy damage from fire, pixels that fit the
growth region BDR trajectory have a wider range of pre-burn, post-
burn, and recovery values, consistent with mixed pixels of burned
forest with other cover types (Fig. 4). Growth regions must be
adjacent to core areas to be included in the BDR algorithm. A similar,
two-phase classification approachwas used previously tomap burned
forest in Alaska with AVHRR data (Kasischke & French, 1995).

The final component of the BDR algorithm, Attribute Analysis,
analyzes the spatial and spectral characteristics of each burn scar
(Fig. 4). Spatial and spectral statistics include the size, perimeter-area
ratio, average greenness in the year of burn detection, and interior
fraction. Interior fractionwas selected as a better measure of burn scar
shape for MODIS results than perimeter–area ratio, calculated based
on the reduction in burn scar size after applying amajority filter to the
initial results using a 3×3 pixel window. These spatial and spectral
statistics form the basis of a burn scar confidence classification,
developed based on algorithm calibration data (see Table 2), in which
large, non-linear burn scars with low average post-burn greenness are
considered most confident. Low confidence burn scars at Landsat
resolution have high perimeter–area ratio typical of the linear or
dendritic pattern of selective logging operations; MODIS low-
confidence detections are small or linear features common along
class boundaries at moderate resolution (Fig. 5). Fig. 5 also shows how
Landsat and MODIS data provide complimentary information. Low-
confidence burn scars at 30 m and 250 m resolutions rarely overlap,
whereas high confidence burn scars at Landsat andMODIS resolutions
are largely coincident. The final outputs of the BDR algorithm
are annual maps of fire-damaged forest in which each burn scar is
classified as high or low confidence according to spatial and spectral
metrics.

In summary, the BDR algorithm uses the temporal and spatial
patterns of canopy damage from fire to isolate burn damages from
undisturbed forests, logged forests, and deforested areas. The BDR
algorithm applied to time series of Landsat GVs data searches for core
areas of contiguous canopy damage from fire that are at least four
times larger than previously documented for log landings in selective
logging operations, uses recovery in years 1–2 after damage to
differentiate forest burning from deforestation, and analyzes the
resulting burn scars to eliminate overlap with selectively logged
Table 4
Fraction of calibration data for the BDR algorithm classified as a core burned area at
MODIS and Landsat resolutions.

Class Area
(km2)

Landsat core
burned area (%)

MODIS core
burned area (%)

Forest 101.6 0 0
Logged forest 102.8 0.05 0.07
Burned forest 105.2 16.3 33.8
Pasture deforestation 89.6 1.8 4.2
Cropland deforestation 91.6 0.02 0.2
forests based on the shape (perimeter–area ratio) and degree of
canopy damage within each burn scar (mean GVs). The minimum
burn scar size in Landsat-based results is 1.5 ha, equivalent to the
smallest core area considered by the algorithm.

The BDR algorithm applied to time series of MODIS mNDVI also
begins with large core areas to search for canopy damage from fire
(≥10.7 ha). The algorithm excludes single pixel clusters to eliminate
potential classification errors from small deforestation or fire events
that cannot be well-characterized using moderate resolution data
(Morton et al., 2005). MODIS results are then classified according to
confidence levels by size, shape, and mean mNDVI in the year of burn
detection. High confidence burn scars are large (N50 ha), non-linear
(interior fraction N0.6), with intermediate post-burn mNDVI values
between logged (N0.8) and deforested areas (b0.71), and recovery of
mNDVI in years 1–2 after canopy damages.

2.5. Validation

We evaluated the accuracies of burn scars from the BDR algorithm
using four independent validation datasets and an inter-comparison of
high-confidence Landsat and MODIS results (Table 2). Fig. 6 sum-
marizes the overall approach for analysis and validation of results from
the BDR algorithm. Omission and commission were calculated on a
per-pixel and per-polygon basis. Per-pixel comparisons quantified the
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Fig. 5. Landsat (solid colors) and MODIS (outlines) 1999 forest burn scar results classified according to high and low confidences based on spatial and spectral metrics for a subset of
the study area (inset). The background image shows the shade-normalized green vegetation fraction (GVs) for 2000.
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total overlap between validation data and fire-damaged forest. Per-
polygon analyses quantified the overlap between BDR results and
validation data for individual validation polygons (perimeters) of
different sizes. We stratified omission and commission errors by
polygon size to quantify the advantages and disadvantages of the BDR
algorithm applied to high and moderate resolution time series. The
accuracies of both low and high-confidence detectionswere evaluated
in order to 1) test whether spatial and spectral metrics derived from
calibration data reduced the overlap with independent estimates of
logging and deforestation, and 2) evaluate the potential for MODIS to
identify small burn scars. Each validation dataset is briefly described
below.

Field observations of forests that burned in 1999–2002 were
collected during June–September of 2001 and 2003 (DCM and RSD).
Fig. 6. Flow diagram of data processing and analysis for annual maps of fire-damaged forest
algorithm identifies burned forest areas using a three-step process. All results from the BD
deforestation, but only high-confidence burn scars were used to estimate interannual varia
In each year, field transects along existing roads targeted fire scars
visible in coincident high-resolution imagery. The location and
perimeter of each forest burn scar were recorded using a hand-held
Global Positioning System (GPS) unit. The date and ignition source for
each fire was determined using a combination of satellite data and
information from landowners. Immediately following field cam-
paigns, field-mapped burn perimeters were identified in coincident
high-resolution data (ASTER or Landsat TM/ETM+) to complete
portions of the burn perimeter that were not accessible during
fieldwork. The total fire-damaged forest area mapped during
fieldwork was 145 km2 in 18 forest burn scars that ranged in size
from 27 to 5,086 ha (Table 5).

We generated an additional validation dataset of burned forest
perimeters from 1999 through visual inspection of Landsat imagery
area from the BDR algorithm applied to time series of MODIS and Landsat data. The BDR
R algorithm were compared to validation data on burned forest, selective logging, and
bility in burn scar size and total fire-damaged forest area.
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Table 5
Detection of field and image-derived validation forest burn scars with results from the
BDR algorithm applied to time series of Landsat and MODIS data. Results are presented
by area (km2) and percent of total validation area detected. The number of observations
(obs.) and validation burn scar sizes are also shown for each year.

Year Obs. Validation burn scars (ha) Area
(km2)

Landsat MODIS

km2 % km2 %

Field
1999 9 34, 205, 237, 496, 505, 820,

1148, 1479, 5086
96.3 78.9 82 82.8 86

2000⁎ 2 49, 103 1.5 0.8 53 0.3 20
2001 1 979 9.8 1.1 12 2.5 25
2002 6 27, 272, 300, 632, 873, 1672 37.2 26.4 71 33.4 90
Total 18 144.7 107.2 74 119.0 82

Image
1999⁎⁎ 145 (See Fig. 6) 1767.9 1071.1 61 1344.5 76

⁎ Only year in which results for high-confidence burn scars differed from total (low+
high confidence) fire-damaged forest area (Landsat 0.6 km2, MODIS=0).
⁎⁎ Overlap of high confidence burn scars with image-derived validation data differed
by b1% from total results (Landsat 1063 km2, MODIS 1331 km2).
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from 1999 to 2001. Spatial and spectral characteristics of field-
mapped forest burn scars were used to identify similar featureswithin
the study area. A total of 145 forest burn scars from 1999
(1767.9 km2), ranging in size from 13 to 14,462 ha, were digitized
within the study area to test omission of canopy damage from fire in
the BDR results (Fig. 7). For per-polygon analyses, we used linear
regression to determine whether the area of fire-damaged forest
identified in Landsat and MODIS results within individual validation
burn scars was similar for burn scars of different sizes. We ran
separate regression analyses for large (N500 ha) and small/medium
(b500 ha) burn scars.

Agreement between fire-damaged forest results from Landsat and
MODIS time series was used as an additional validation test since
canopy damages are captured differently in high and moderate
resolution data (see Fig. 5). Subtle damages from selective logging are
less likely to be detected with moderate resolution data than with
data from Landsat-like sensors (Asner et al., 2004), while mixed pixel
effects at class boundaries typical at MODIS resolution are less likely to
occur with higher resolution data (Morton et al., 2005). Therefore,
detection by both MODIS and Landsat BDR results increases the
confidence of an individual burn scar. To compare the burn scar
results frommoderate and high resolution data, linear regression was
used to determine whether the area identified in Landsat results (y)
was similar to the area identified in MODIS results (x). Separate
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Fig. 7. Number of burn scars (bars) and cumulative contribution to total validation fire-dama
regression analyses were run for large (N500 ha) and small/medium
(b500 ha) burn scars. We also calculated the fraction of the total fire-
damaged forest in high-confidence burn scars that was detected at
both Landsat and MODIS resolutions each year.

Independent datasets on selective logging (Asner et al., 2005) and
deforestation (INPE, 2007) were used to characterize potential
commission errors in the Landsat and MODIS-based results of fire-
damaged forest. These comparisons did not provide a rigorous test of
commission errors in results from the BDR algorithm because neither
logging nor deforestation data products were specifically designed to
exclude burned forest. Instead, evaluation of overlap between canopy
damage from fire, selective logging, and deforestation was useful to
characterize the nature and extent of classification confusion among
disturbance types in southern Amazonia. Overlap between defores-
tation events N25 ha and fire-damaged forests was further evaluated
according to post-clearing land use based on results fromMorton et al.
(2006). Finally, accounting methods differ between the BDR algo-
rithm and datasets of selective logging and deforestation. For fire-
damaged forest, images from the early dry season capture evidence of
forest burning during the previous dry season. Selective logging and
deforestation damages were assigned to the year in which they were
mapped, representing the sum of all damages between annual images.
For validation, this study compared fire-damaged forests, selective
logging, and deforestation identified in the same year (e.g., burn
damages from 1999 were compared with selective logging from 2000
since both were derived from the 2000 Landsat data, burn damages
from 2002 were compared with 2003 deforestation, etc.). For
consistency, this study described validation comparisons using the
year of burn damages.

3. Results

3.1. Validation: omission

Field and image-derived forest burn scars were used to quantify
omission in results from the BDR algorithm applied to Landsat and
MODIS time series. Overall, the BDR algorithm accurately identified
forest burn scars mapped during fieldwork (Table 5). Landsat results
identified some canopy damage from fire in all 18 field-mapped burn
scars, and MODIS results detected fire damages in all but one field-
mapped burn scar in 2000 (size=103 ha). MODIS results more
closely matched burn perimeters mapped during fieldwork than
Landsat results due to heterogeneity of canopy damage within the
burn scar that truncated the Contextual Analysis component of the
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Table 6
Overlap between Landsat-based selective logging from Asner et al. (2005) and fire-
damaged forest for all BDR results (total) and high-confidence burn scars (HC) from
Landsat and MODIS time series. Total high confidence fire-damaged forest area (HC
Area) and the percentage of HC area that overlapped with selective logging are also
shown.

Year⁎ Logged
area
(km2)

Landsat
HC area
(km2)

Landsat overlap MODIS HC
area (km2)

MODIS overlap

Total
(km2)

HC
(km2)

% Total
(km2)

HC
(km2)

%

1999 2587.6 1508.1 653.8 633.4 42 2526.3 848.2 821.0 33
2000 1466.1 55.4 10.7 5.2 9 65.5 12.8 4.4 7
2001 1878.6 34.9 2.2 2.0 6 45.5 11.5 2.8 6

⁎ Asner et al. (2005) assigned logging between annual Landsat images and the end
image date, whereas burn damages from the BDR algorithm are attributed to previous
year. As shown, year 1999 corresponds to logging in 2000, etc.
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BDR algorithm at Landsat resolution. All of the field-mapped burn
scars were identified as high-confidence results at Landsat andMODIS
resolutions (Table 5).

Landsat and MODIS-based results for fire-damaged forest in 1999
identified burn damages in 99% and 94% of image-derived burn scars,
respectively (Table 5). Landsat results detected 61% of the total fire-
damaged forest area (pixels within the burn perimeter), with some
canopy damage from fire detected in 143/145 burn scars. The fraction
of digitized burn scars detected by Landsat was consistent for large
(N500 ha, y=0.63x, R2=0.96, n=65) and small validation burn scars
(b500 ha, y=0.68x, R2=0.97, n=81, Fig. 8a). MODIS results
detected a higher percentage of the total fire-damaged forest area
(76%) but fewer individual burn scars than Landsat (136/145). Four of
the 9 digitized forest burn scars without a corresponding MODIS
detection were b50 ha. Results from MODIS underestimated the area
within the perimeter of individual burn scars by approximately 25%
for digitized burn scars of all sizes (N500 ha, y=0.75x, R2=0.97,
n=65; b500 ha, y=0.74x, R2=0.89, n=81, Fig. 7b). Nearly all 1999
burn scars were characterized as high-confidence results at both
Landsat andMODIS resolutions; large burn scars (N500 ha) accounted
for 93% of the total digitized area (see Fig. 7).

3.2. Validation: commission

3.2.1. Selective logging
Independent maps of annual selective logging damages (Asner

et al., 2005) were used to characterize potential commission errors in
results from the BDR algorithm. Overlap between selective logging
and canopy damage from fire was high in 1999 but very low in 2000
and 2001 (Table 6). Coincident burning and logging classifications in
1999 were predominantly in high-confidence results (Table 6). Forest
areas classified as logged and burned in 1999 also overlapped with
52% of field-mapped burn scars and 48% of digitized forest burn scars
in that year. In 2000 and 2001, there was little overlap between fire-
damaged forest and selective logging, and most coincident detections
occurred in the low-confidence burn scars. In all years, forest burning
extended beyond the area identified as both logged and burned. For
example, burn scars in Landsat and MODIS results from 1999 that
were also classified as logging averaged only 49% and 33% logged,
respectively.
Fig. 8. Validation of results from the BDR algorithm applied to time series of Landsat (a) andM
validation data and BDR results for burn scars b500 ha is shown in the upper left corner of
3.2.2. Deforestation
Landsat-based maps of annual deforestation from the PRODES

program (INPE, 2007) were also used to quantify potential commission
errors in results fromtheBDRalgorithm.Overlap betweenfire-damaged
forest and PRODES deforestation occurred primarily in high-confidence
burn scars (Table 7). The area of overlap between fire-damaged forest
and deforestationwas similar for Landsat andMODIS results in all years
(Table 7).

Coincident detection of burn damages and deforestation varied
according to clearing size and post-clearing land use (Table 7). In 2000
and 2001, confusion between deforestation and fire-damaged forest
was mostly confined to large (N25 ha) forest clearings for pasture.
Burn scars only overlapped with a small fraction of the individual
areas cleared for pasture in those years; the average fraction of forest
clearings for pasture mapped as canopy damage from fire was 28% in
2000 and 25% in 2001. In 2002, a small number of individual clearings
for pasture (37/192) that were mapped as N50% fire-damaged forest
accounted for 75% of the area of overlap between deforestation for
pasture and fire-damaged forest in that year. Forest burn scars
overlapped less frequently with deforestation classified as not in
agricultural production (NIP), and did not overlap with cropland
deforestation and clearings b25 ha except in 2002 (Table 7).
ODIS (b) data using 145 image-derived burn scars from 1999. The relationship between
each panel (inset). In each panel, a dashed 1:1 line is shown for reference.



Table 7
Overlap between fire-damaged forest (2000–2002) and PRODES deforestation (2001–2003) (INPE, 2007) for all BDR results (total) and high-confidence burn scars (HC). Total
overlap with PRODES deforestation is further divided by size and post-clearing land use (Morton et al., 2006). Total high confidence fire-damaged forest area (HC Area) and the
percentage of HC area that overlapped with deforestation are also shown.

Year⁎ Deforested area
(km2)⁎⁎

Landsat HC
area (km2)

Landsat overlap MODIS HC
area (km2)

MODIS overlap

Total (km2) HC (km2) % Total (km2) HC (km2) %

2000 Total 287.0 55.4 13.0 12.9 23 65.5 21.5 11.9 18
N25 ha
Cropland 78.5 0.0 0.0 0.6 0.1
Pasture 165.4 10.0 10.0 15.7 8.4
NIP 15.3 2.2 2.1 3.7 3.0
b25 ha 27.8 0.8 0.8 1.5 0.5

2001 Total 398.3 34.9 19.3 19.1 55 45.5 26.3 18.7 41
N25 ha
Cropland 113.5 0.0 0.0 0.9 0.0
Pasture 225.9 16.1 16.0 18.2 12.5
NIP 24.3 2.7 2.6 6.2 5.7
b25 ha 34.6 0.5 0.5 1.0 0.5

2002 Total 649.3 281.4 119.3 115.3 41 402.7 125.6 108.3 27
N25 ha
Cropland 235.2 13.5 13.5 4.3 1.9
Pasture 275.2 63.7 63.1 61.5 53.4
NIP 75.2 35.3 32.1 49.7 44.2
b25 ha 63.7 6.9 6.6 10.2 8.8

⁎ Burn year 2000 corresponds to 2001 deforestation due to differences in annual accounting between BDR and PRODES.
⁎⁎ Landsat-based annual deforestation from PRODES (INPE, 2007). Clearings N25 ha classified according to post-clearing land use (Morton et al., 2006).
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3.3. Interannual variation in fire-damaged forest, 1997–2002

The majority of fire-damaged forest mapped with Landsat and
MODIS time series was not associatedwith the 1997–1998 ENSO. Fire-
damaged forest area in 1999 was 10 and 15 times greater than the
amount of canopy damage from fire identified during 1997 and 1998,
respectively (Table 8). Similarly, nearly all of the burning attributed to
1999 in the analysis of MODIS data from 2000 was unrelated to the
ENSO event; less than 1% of MODIS fire-damaged forest area in 1999
was classified as burned during 1998 in Landsat-based results
(12 km2). Due to rapid recovery of canopy greenness following fire,
imagery from the first year following understory fire damages is
critical to identify and follow the fate of burned Amazon forests.

Interannual variation in fire-damaged forest area was similar
between results from the BDR algorithm applied to Landsat and
MODIS time series (Table 8). The location of individual burn scars
during 1999–2002 was also similar between moderate and high-
resolution results. MODIS burn scars with corresponding Landsat
detections accounted for over 91% of all MODIS high confidence fire-
damaged forest area (Table 8).
Table 8
Fire-damaged forest area detected by the BDR algorithm using Landsat andMODIS time
series for all forest burn scars (total) and high-confidence burn scars (HC). Coincident
detections at both high and moderate resolutions (overlap) were derived from high-
confidence burn scars.

Year Total fire-damaged
forest area (km2)

HC fire-damaged
forest area (km2)

Overlap
(km2)⁎

Landsat
1997 150.3 123.6
1998 41.6 38.6
1999 1549.9 1508.1 1435.8
2000 67.5 55.4 28.1
2001 35.9 34.9 17.4
2002 290.5 281.4 185.6

MODIS
1999 2788.7 2526.3 2317.3
2000 143.4 65.5 52.4
2001 88.9 45.5 40.4
2002 507.8 402.7 359.5

⁎ Forest burn scars with high-confidence detections in Landsat and MODIS results
during 1999–2002.
In the southern Amazon study area, the total Landsat high
confidence fire-damaged forest area during 1997–2002 was
2136 km2 (Table 6), equivalent to 10% of all forests in the study
area in 1997 (Fig. 9). The total area in high confidence burn scars
during 1999–2002 at MODIS resolution was 2832 km2 (13% of 1997
forested area).

3.4. Burn scar sizes

The contribution of large and small burn scars to total fire-
damaged forest area varied interanually (Fig. 10). Large burn scars
(N500 ha) were only identified in years with highest fire damages
(1999 and 2002). However, these largest burn scars contributed the
majority of canopy damage from fire during 1997–2002. Burn scars
N500 ha accounted for 56% of the Landsat fire-damaged forest area
during 1997–2002 and 78% of the MODIS fire-damaged forest area
during 1999–2002.

Small burn scars (b50 ha) in Landsat results were common in all
years but contributed only 12% of the total fire-damaged forest area
over the study period. Small burn scars contributed 46% of the total
fire-damaged forest area in years with lowest canopy damage from
fire (1998 and 2001).

The estimated size of individual burn scars was larger fromMODIS
than from Landsat, but the exact relationship between MODIS and
Landsat-based areas was strongly dependent on burn scar size. For
large burn scars (N500 ha), MODIS-based burn scar size (x) was
consistently twice that derived from Landsat data (y): 1999
(y=0.52x, R2=0.92, n=79) and 2002 (y=0.49x, R2=0.94,
n=19) (Fig. 11). The correlation between MODIS and Landsat-
based burn scar sizes was lower for smaller burn scars (b500 ha), and
the slope of the linear fit was more variable (1999: y=0.23x,
R2=0.47, n=200; 2000: y=0.40x, R2=0.82, n=38; 2001:
y=0.23x, R2=0.56, n=30; and 2002: y=0.37x, R2=0.68, n=105.
Data not shown).

4. Discussion

The BDR algorithm is a novel approach to estimate the annual
extent of canopy damage from understory fires in Amazon forests. The
use of satellite image time series and spatial attributes of burn scars
enabled accurate identification of fire-damaged forest areas and



Fig. 9. Total fire-damaged forest area during 1997–2002 (white) from the BDR algorithm applied to the time series of Landsat shade-normalized green vegetation fraction (GVs).
Forested regions appear gray and deforested areas appear black in the background image of the study area from 2003.

Fig. 10. Percent contribution from burn scars of different sizes to annual high-confidence fire-damaged forest area for the BDR algorithm applied to time series of Landsat (top) and
MODIS (bottom).
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Fig. 11. Estimated size of individual burn scars N500 ha in 1999 (a) and 2002 (b) from the BDR algorithm applied to time series of MODIS and Landsat data. For 1999, the relationship
betweenMODIS and Landsat estimates of burn scar size for individual scars N4000 ha is shown in the upper left corner (inset). In each panel, a dashed 1:1 line is shown for reference.
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improved separability of burning from logging and deforestation
compared to single-date methods. Results from the BDR algorithm
applied to time series of Landsat and MODIS data demonstrate the
high degree of interannual variability in the extent of fire-damaged
forest. Unexpectedly, fire-damaged forest in 1999 was an order of
magnitude higher than during the 1997–1998 El Niño. Large burn
scars (N500 ha) were also detected in 2002, highlighting potential
differences in the relationship between climate and fire in this study
area compared to Amazon regions with highest fire damages reported
during ENSO-related drought events (e.g., Alencar et al., 2006;
Barbosa & Fearnside, 1999; Nepstad et al., 2004). Our results illustrate
the potential to address critical questions concerning climate and fire
risk in Amazon forests when the BDR algorithm is applied over larger
areas.
4.1. Fire-damaged forest in southern Amazonia

Interannual variation in fire-damaged forest area was high within
the study area in southern Amazonia. Fires damaged 10% of all forests
in the study area during 1997–2002, and three quarters of all canopy
damage from fire occurred during 1999. Findings in this study were
similar to results from Matricardi et al. (2010) for burn damages in
1999. In contrast, Alencar et al. (2006) reported extensive fire
damages in 1998 for a neighboring study area in northern Mato
Grosso state, Brazil. At least three factors could contribute to regional
differences in understory fire damages in southern Amazonia. First,
high rates of selective logging in our study area (Asner et al., 2005;
Matricardi et al., 2007, 2010; Souza et al., 2005a) may have increased
the risk of understory forest fires (Holdsworth & Uhl, 1997; Nepstad
et al., 1999; Uhl & Buschbacher, 1985). Second, differences in climate
and soils may contribute to the observed interannual differences in
understory forest fire damages in the region. Although the network of
meteorological stations in Amazonia is sparse, merged precipitation
products from gauge measurements and satellite sensors (Huffman
et al., 2007) offer the possibility to evaluate regional climate patterns
preceding and during widespread understory fire activity identified
using the BDR approach. Third, drought conditions in Amazonia are
associated with increased rates of tree mortality (Brando et al., 2007).
It is therefore possible that drought-induced tree mortality from the
1997–1998 ENSO event increased understory fire risk in later years.
The potential for these differences in land use, climate, or forest
structure to generate spatial heterogeneity in understory forest fire
damages in Amazonia merits further study.

Very large burn scars were only identified during years with
extensive forest burning, consistent with previous findings of greater
penetration of understory fires in periodic high-fire years (Alencar
et al., 2004, 2006; Cochrane & Laurence, 2002). Based on understory
fire spread rates of 0.1–0.5 m/min (Balch et al., 2008; Cochrane et al.,
1999), the largest fires in 1999 may have burned continuously for
approximately two weeks. Whether high fire damages in these years
were linked with climate (Ray et al., 2005) or an increase in fuel
availability (Alvarado et al., 2004; Balch et al., 2008; Holdsworth &
Uhl, 1997), prolonged rainless periods once understory fires begin
appear necessary for individual fires to damage large areas.

Once burned, Amazon forests may be more susceptible to future
fires based on the influence of canopy damage on forest microclimate
and fuels (Cochrane et al., 1999). By extending the length of the
satellite data time series, the BDR approach could also be used to
characterize the frequency of fires in previously-burned forest to
evaluate long-term changes in the structure of tropical forest
ecosystems from frequent fire exposure (Barlow & Peres, 2008;
Cochrane & Schulze, 1999).

4.2. BDR approach

MODIS and Landsat data time series have complementary
characteristics for mapping canopy damage from fire in tropical
forests. Lower data volumes and a more homogenous disturbance
signature in 250 m MODIS data facilitated BDR processing; some
canopy damage was not detected at Landsat resolution because
damaged pixels were not contiguous, interrupting the neighborhood
search in the Contextual Analysis component of the BDR algorithm.
Therefore, MODIS results more closely matched the validation burn
perimeters than Landsat results. Landsat data were essential for
detecting small burn scars (b50 ha) and fire damages prior to the
MODIS era. Landsat-based results also suggested that only half of the
forest area within large burn perimeters exhibited canopy damage,
similar to field studies of canopy mortality from fire in Amazonia.
Advantages of Landsat resolution for evaluating the patterns and
severity of canopy mortality within the burn perimeter, as identified
in previous field studies (e.g., Balch et al., 2008; Cochrane & Schulze,
1999; Haugaasen et al., 2003), are an important area for future study.
Given the tradeoffs in spatial resolution between MODIS and Landsat,
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a multi-satellite approach may be most efficient for targeting high-
resolution analyses of fire damages based on initial burn perimeters
mapped with moderate resolution data.

The BDR approach successfully isolated fire-damaged forest from
areas of selective logging in years with low fire activity such as 2001,
when b0.4% of logging was classified as burning and b9% of burning
was also classified as logging. Given previous reports of low sensitivity
to fine-scale canopy damages from selective logging in moderate
resolution data (e.g., Asner et al., 2004), the high degree of confusion
between MODIS-based burn scars and logging in 1999 was unexpect-
ed (821 km2 represented 31% of logging and 33% of canopy damage
from fire). Overlap between validation burn scars and selective
logging suggests that logging and burning may have occurred in the
same year (1999) or that burning re-exposed evidence of selective
logging prior to 1999. Clarifying the role of logging for generating both
fuels and ignition sources for forest fires in Amazonia during years
with extensive forest fire damages is an important subject for future
study.

Overlap between deforestation and fire-damaged forest in both
Landsat and MODIS results suggests that PRODES may have over-
estimated the amount of deforestation in the study area in 2002. In
2000 and 2001, overlap between deforestation and burning classifica-
tions represented b5% of the total deforested area, whereas coincident
deforestation and burning detection in 2002 (108–115 km2) was
approximately 17% of total deforestation that year. Because the BDR
algorithm identifies areas of fire-damaged forest based on forest
recovery over time, it is likely that the areas of overlap between burn
scars and deforestation were never fully cleared for agricultural use.
Our results further suggest that cropland expansion may be a more
important driver of recent deforestation than previously reported
(Morton et al., 2006) because most overlap between forest burning
and PRODES deforestation was associated with clearing for pasture.
Lower overlap between mechanized forest clearing for cropland and
fire-damaged forest may be a result of seasonal differences in the
timing of fires for deforestation; fires for cropland deforestation occur
earlier in the dry season than fires for pasture deforestation when
surrounding forests may be less flammable (Morton et al., 2008).
However, confusion between forest fires and deforestation cannot be
completely resolved by combining independent data products
derived from different methods (image differencing and time-series
approaches).

Development of an integrated time-series approach to separately
account for the contributions from understory fires, selective logging,
and deforestation to annual forest damage would satisfy information
needs for both policy and science applications. All three types of forest
disturbance could be identified in time series of data from Landsat-
like sensors by combining methods demonstrated in this study to
follow fire damages and deforestation over time with techniques to
detect spatial attributes of forestry infrastructure (Asner et al., 2005;
Matricardi et al., 2005; Souza et al., 2005a). Time series of MODIS data
could be used to estimate fire-damaged forest and deforestation in an
internally-consistent manner, given that MODIS-based results in this
study were largely insensitive to subtle canopy damages from
selective logging. Any integrated approach that requires several
years of satellite imagery will not replace the need for operational
deforestation monitoring (INPE, 2006) or global burn scar mapping
(e.g., Giglio et al., 2009; Roy et al., 2008). As presented here, the BDR
algorithm can only map canopy damages from fire with high
confidence on a two-year delay in order to track both canopy damage
and recovery. However, longer time horizons under discussion for
policy and market mechanisms for Reducing Emissions from
Deforestation and forest Degradation, conservation and enhancement
of forest carbon stocks, and sustainable forest management (REDD+)
may permit this type of retrospective approach (Gullison et al., 2007),
given the substantial differences in forest carbon losses from
understory fires (e.g., Alencar et al., 2006; Balch et al., 2008; Barlow
et al., 2003), selective logging (e.g., Huang et al., 2008; Keller et al.,
2004), and deforestation (Houghton et al., 2000; van der Werf et al.,
2009).

4.3. Uncertainties

Validation efforts in this study provide a rigorous test of the BDR
algorithm based on the best available data. Omission of fire-damaged
forest was tested using field and image-derived validation burn scars,
and commission errors were evaluated using independent data on
selective logging and deforestation in the region. However, no “gold
standard” reference information on understory fire extent was
available to resolve uncertainties when independent data products
on forest disturbance overlapped or to test omission and commission
errors at a regional scale. The time series approach presented here, in
combination with field observations or very high resolution (b5 m)
remote sensing data, can help resolve whether overlap among
existing products represents misclassification or sequential forest
disturbances. Reducing uncertainties in the rates of deforestation and
forest degradation remains a priority in Amazonia and other tropical
forest regions, especially given burgeoning international efforts for
REDD+.

Several limitations of the BDR algorithm may lead to an
underestimate of fire-damaged forest in this study. The BDR algorithm
may not detect understory fires that do not generate any canopy
damage or forests that burn every year. Similarly, fires that generate
very low or very high canopy damage may be considered low
confidence detections to minimize potential classification errors with
selective logging and deforestation, respectively. Good correspon-
dence between field observations of burned forest and BDR results
suggests that canopy recovery following fire is characteristic of
burning events in the study region. However, burned forests that do
not recover in years following fire damages will be underestimated by
the BDR algorithm. Future work in this area is needed to characterize
the levels of canopy damage from fire identified by the BDR approach,
including the impacts of repeated fires on burn detection. During
sequential forest disturbance events, such as fire following selective
logging (Souza et al., 2005a), fire damages that follow the network of
skid roads and log decks installed during forestry operations may not
be considered high confidence burn scars in the BDR approach. Finally,
immediate abandonment of partially-cleared areas or installation of
plantation forests could generate a recovery trajectory similar to
burned forest, leading to commission errors with the BDR approach.
Data on land abandonment and plantation forests were not available,
but based on field knowledge of the study region these practices are
rare relative to widespread damages from understory fires, selective
logging, and deforestation for agricultural use.

5. Conclusions

The BDR algorithm is a novel method to identify spatial and
temporal characteristics of burned forest in time series of satellite
data. Time series of annual dry season data from a minimum of three
consecutive years permits detection of two changes—a reduction in
green vegetation following fire and immediate recovery of canopy
material in subsequent years. The results from this study demonstrate
that both Landsat and MODIS time series are suitable for isolating
understory forest fire damages from selective logging and deforesta-
tion in Amazonia using the BDR algorithm. Although MODIS-based
results more closely matched validation burn perimeters, comple-
mentary information from MODIS and Landsat resolution time series
suggests that a combined approach may be useful to characterize the
extent and severity of canopy damage from understory fires in
Amazonia, respectively.

Mapping the annual extent of canopy damage from understory
fires in Amazonia is critical to improve estimates of carbon emissions
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from forest degradation to meet both scientific and policy objectives.
This study confirmed that periodic high fire years contribute
substantially to forest degradation in southern Amazonia. However,
the two yearswithmost extensive burning in the study area (1999 and
2002) did not coincide with the 1997–1998 ENSO as reported in
previous studies. Large fires (N500 ha)were only detected in 1999 and
2002, indicating that climatic conditions in these years may have
allowed slow-moving understoryfires to burn continuously for several
weeks. Applying the BDR algorithm to longer time series and larger
study areas will improve understanding of relationships among
climate, land use, and forest fire activity in Amazonia. In particular,
the BDRapproach offers the possibility to assess interannual variability
in understory forest fire damages for tropical forest regions that
experience a range of seasonal and interannual precipitation patterns.
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