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A remote sensing-based approach to estimating the fire 
spread rate parameter for individual burn patch extraction
Michael Humber, Maria Zubkova and Louis Giglio

Department of Geographical Sciences, University of Maryland, College Park, MD, USA

ABSTRACT
For the past two decades, satellite-derived activef fire data have 
been used in a multitude of operational applications and in a large 
and growing body of research on the role of fire within the Earth 
system. More recent work with satellite-based active fire data has 
been directed toward estimating what are in effect broad-scale fire 
spread rates that are in turn used as an important temporal para
meter for the extraction of individual-fire boundaries from burned 
area maps. Here we use data mining to identify active fire clusters 
that serve as an input to a fire spread reconstruction algorithm to 
derive optimal global fire spread rates suitable for fire-perimeter 
extraction. The spread rates calculated for the active fire clusters, 
which are useful for applications beyond perimeter extraction, 
correlate with the spread rates based on reference fire boundaries 
(R2 = .82, NRMSE = 2.6%) and are generally compatible with other 
studies, despite key differences in data acquisition methods and 
quantities measured.
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1. Introduction

For the past two decades, satellite-derived fire data have been used in a multitude of 
operational applications and in a large and growing body of research on the role of fire 
within the Earth system. Such products can be separated into active fire products that 
indicate actively burning locations at the time of the sensor overpass, like the MODIS 
MOD14/MYD14 Active Fire products (Giglio, Schroeder and Justice 2016), and burned area 
products that indicate locations affected by surface fires based on changes in spectral 
properties, like the MODIS MCD64A1 Burned Area product (Giglio et al. 2018). Both 
categories of products are fundamentally raster-based in that, at least initially, they detect 
or map fire activity within individual pixels or sensor footprints.

More recent work has been directed toward the extraction of fire-level (versus pixel- 
level) information from these raster products, in particular with the goal of identifying the 
boundaries of individual fires. Such ‘fire extraction’ algorithms attempt to identify indivi
dual burn scars, or patches, from burned area datasets (e.g. Archibald and Roy 2009; 
Archibald et al. 2013; Hantson et al. 2015; Oom et al. 2016; Laurent et al. 2018; Andela et al. 
2019; Artés et al. 2019). The algorithms leverage existing global burned area datasets that 
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can capture details in burn shapes (Humber, Boschetti and Giglio 2020) and which also 
estimate the day on which a pixel (or cell) burned. Extraction of individual burn scars is 
typically accomplished using a common flood-fill algorithm that evaluates whether 
adjacent pixels burned within a set number of days (Archibald and Roy 2009). This 
implicitly creates a free temporal parameter, τ, representing the number of days allotted 
for a fire to spread from one pixel to a neighboring pixel, and is thus inversely related to 
the rate of spread (RoS) over the scale of the sensor footprint.

To date, the particular value chosen for this sensor-dependent parameter has neither 
been established on a theoretical basis nor informed by ground-based measurements, 
but instead defined by other criteria such as the product’s temporal uncertainty (e.g. 
Archibald and Roy 2009 chose τ = 8 days to match the temporal uncertainty of the 
MCD45A1 burned area product), visual inspection and adjustment (e.g. Hantson et al. 
2015; adjusted the Archibald and Roy 2009 value to τ  = 14 days to minimise the influence 
of cloud cover), or other criteria (e.g. Laurent et al. 2018 used τ = {3, 5, 9, 14} days based 
values selected by other studies). Previous studies (Table 1.) have implemented a range of 
fixed values for τ, from 2 days (Archibald et al. 2013) to 14 days (Hantson et al. 2015; 
Hantson, Pueyo and Chuvieco 2015). However, the use of a static, global threshold 
assumes that all fires spread at the same rate when, in reality, there are significant 
differences based on factors like wind, fuel moisture, fire type, and canopy type (Cruz, 
Alexander and Wakimoto 2005; Cruz et al. 2015). While recent work by Andela et al. (2017, 
2019) is unique in that τ is defined dynamically based on the observed fire frequency (i.e. 
the number of times a cell burned during the study period) at a given location, neither 
study actually demonstrated that there is a relationship between the two variables.

These approaches are problematic because the number and size of fires identified 
using such approaches are directly linked to the value of τ, and inappropriate selection of 
the value can severely impact the results. The sensitivity of the standard flood-fill algo
rithm to changes in τ is demonstrated in Figure 1. when applied to the MCD64A1 burned 
area product. Although the sensitivity to changes in τ is small within similar climatological 
zones, the differences between zones are more pronounced. For example, increasing τ 
from 2 days to 14 days results in large increases in apparent fire size in both Eastern 
Canada and the Brazilian Cerrado. In areas more prone to large, isolated fires like Eastern 
Canada, the 14-day temporal parameter yields reasonable results, while the same value is 
likely to result in over-aggregation within regions with high burning frequencies like the 
Cerrado. This observation corroborates the warning of Hantson et al. (2015) that the 14- 
day threshold ‘[. . .] could also result in an artificial increase in large fires for areas with a 
high burned fraction, which increases the chance that neighboring burn scars touch and 

Table 1. Spread rate thresholds from selected studies.
Spread Rate Threshold(s) Reference

8 days (Archibald and Roy 2009)
2 days (Archibald et al. 2013)
14 days (Hantson et al. 2015; Hantson, Pueyo and Chuvieco 2015)
2, 8, and 14 days* (Oom et al. 2016)
2, 3, 4, or 5 days^ (Andela et al. 2017)
3, 5, 9, and 14 days* (Laurent et al. 2018)
4, 6, 8, or 10 days^ (Andela et al. 2019)
5 days (Artés et al. 2019)

*Each threshold applied separately and globally; ^threshold varies spatially depending on fire frequency
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are counted as one’. The variability in the result of flood-fill algorithm to the temporal 
threshold underscores the need to define the local variations in the speed at which fire 
spreads, even at coarse spatial resolutions. This, in turn, influences downstream analyses 
conducted on the individual fire level and enable better characterisation of fire behavior 
(e.g. Artés et al. 2019; Andela et al. 2019), emissions (Yue et al. 2014), and fire impact 
(Lasslop et al. 2019).

Figure 1. 95th percentile fire size calculated with temporal parameters of 2-days and 14-days using 
the standard flood-fill algorithm implementation. Note that fire size increases monotonically as the 
temporal parameter representing the threshold of cell-to-cell spread (in days) also increases.
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In this work, we provide a method for defining an optimally-tuned Coarse-Resolution 
Rate of Spread (CRoS), ρ, for large regions according to the biome and vegetation cover 
using satellite detections of active fires. The resulting estimates of ρ, reported in km day−1, 
at coarse spatial resolutions (250-m and coarser) can be used to make regional, empiri
cally-driven adjustments to flood-fill algorithms, even with the comparatively low spatial 
precision of the measurements. These estimates can then be used as an input to inform 
the temporal parameter used by flood-fill algorithms at the pixel-level by recasting ρ into 
the time domain as τ ¼ δ=ρ, where δ represents the (center-to-center) distance between a 
cell of a classified image and its neighbor (Figure 2). This work will therefore help reduce 
errors from over- and under-aggregation of individual fires by increasing the sensitivity of 
downstream fire extraction algorithms to differences in RoS based on satellite 
observations.

2. Data

2.1. MODIS active fire data

The MODIS Collection 6 MCD14 ML (Giglio, Schroeder and Justice 2016) monthly active 
fire location product1 provides a record of the daytime and nighttime detections from the 
Aqua and Terra platforms, including the location and time of detection of each active fire 

Figure 2. Proposed application of CRoS metric to burn patch extraction. (a) all available MCD14ML 
active fire locations are used as input to the (b) DBSCAN clustering and (c) fire spread tracking phases 
(see Figure 3 for additional details). (d) summary metrics, e.g., median CRoS (?), are calculate for each 
combination of Biomes-per-Realms and tree-cover category and converted into e) spatially explicit 
cell-to-cell ?-thresholds used to control f) flood-fill algorithms for individual burn patch extraction.

652 M. HUMBER ET AL.



identified. The products are known to have a low rate of commission errors of 5% or less 
globally, except in Equatorial Asia, where the commission error rate was shown to be 
approximately 8% (Schroeder et al. 2008; Giglio, Schroeder and Justice 2016); thus, fires 
that are detected by the product can be used confidently. The detection algorithm 
primarily exploits electromagnetic radiation emitted in the middle-infrared portion of 
the spectrum, which is largely unaffected by the presence of smoke. However, there are 
instances in which thick clouds obscure active fires, which cannot be accounted for.

Though the product’s nominal cell size (at nadir) is 1 km, the algorithm is sensitive at 
the sub-pixel level and can detect flaming fires as small as ~50 m2 in size under ideal 
conditions (Giglio et al. 2003). The active fire locations must consequently be considered 
approximate since the spatial quantisation of the pixel necessarily results in a loss of 
spatial precision. Both daytime and nighttime observations were used in the analysis. Only 
observations where the scan angle was within ±46.7° were used, corresponding to a 
maximum along-scan pixel dimension of 2 km. This restriction was used to limit the 
negative impacts of random artifacts stemming from the MODIS bowtie effect and 
pixel-center assignment of active fire locations. Importantly, active fire observations 
have lower temporal uncertainties than burned area products, enabling the calculation 
of ρ with higher accuracy than would be achievable using burned area products 
(Chuvieco et al. 2018; Boschetti et al. 2019; Humber et al. 2019).

2.2. Reference fire boundaries

Independently derived fire boundaries were used to identify the set of active fire locations 
belonging to the same event to facilitate the calculation of the CRoS. The importance of 
fire boundaries is magnified when using coarse satellite observations, where multiple 
distinct fires might occur in the same sensor sample. Unfortunately, official data about 
individual fires are not available in most countries. Eight sources of reference data cover
ing nine countries were identified as useful for evaluating the results of this work 
(Table 2.).

An examination of the data showed that most datasets include records that fall into 
one or more of the following categories: (i) multiple records of the same fire; (ii) incom
pletely mapped fires, i.e. the fire started before or ended after scene pairs used for 
photointerpretation; (iii) cloud-obscured or otherwise unmapped areas were 
IMPROPERLY identified; (iv) implausible aggregation of separate fires into a single record. 
Records falling into any of these categories were removed, as were fires smaller than 200  
ha, consistent with previous studies (Benali et al. 2016). While we assume that the 
reference fires are correctly classified, not all reference datasets are well-distributed within 
their respective countries and cannot be considered fully representative of the area’s fire 
regime.

2.3. Yearly forest/mixed/non-forest cover definitions

Clusters of active fires, defined in the Methods section, were categorised into forested, 
mixed, and non-forested land cover types depending on the proportion (specified below) 
of active fires coincident with forested and non-forested pixels defined in the Global 
Forest Change (GFC) dataset (Hansen et al. 2013). Each active fire location was compared 
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to the GFC classification maps and was labeled as a fire-in-forest if the cell that burned was 
labeled as either extant forest (as of 2020) or was still forest at the time of the fire, e.g. the 
fire was labeled fire-in-forest if the fire occurred in 2005 and forest cover loss occurred in 
2005 or later. Fires and forest cover losses occurring in the same year were labeled as fire- 
in-forest, as we assume that the fire caused the loss of forest. The mismatch of spatial 
resolutions (1 km and 30 m for the MCD14 ML and GFC datasets, respectively) was 
resolved by aggregating the GFC dataset to the 1-km MODIS resolution to generate 
annual binary forest/non-forest classifications where a cell received a ‘forest’ label if the 
simple majority of the contributing cells were identified as forest for a given year.

Fire clusters were extracted and categorised based on the percentage of the active fire 
locations labeled as fire-in-forest as follows: clusters with 90% or more of active fire 
locations located in forests were labeled as forest fires; clusters with between 10% and 
90% of active fire locations located in forests were labeled as mixed fires; clusters with 
10% or less of active fire locations located in forests were labeled as non-forest fires. While 
there are several definitions of the per cent tree cover that constitutes forest and non- 
forest, we elected to use these stricter thresholds to create more ‘pure’ classes.

2.4. Yearly cropland mask

Mapping fire activity in agricultural areas remains a known challenge (Hall et al. 2016; 
Boschetti et al. 2019). Specifically, in the context of this work, cropland burning can cause 
spurious results due to the proximity of many independent fires to one another, i.e. 
several agricultural fires can appear as single wildfire at coarse spatial resolutions. We 
used the Landcover CCI (ESA 2017) product to create yearly crop masks by aggregating 
the cropland and cropland-natural vegetation mosaic classes. Fire clusters with more than 
10% of the active fire locations in cropland were discarded. The threshold was applied for 
each year in the study period, and the years that postdate the Landcover CCI product 
were assigned the value for 2018.

2.5. Biomes

Prior works stratified fire patterns at the ecoregion level by forest/non-forest covers 
(Abatzoglou et al. 2018; Zubkova et al. 2019). We similarly used the Ecoregions 2017 
dataset (Dinerstein et al. 2017) to apply the forest/mixed/non-forest stratification at the 
biome level2. Biomes were further separated by realms that approximately represent 
continents to distinguish between the same biome present in multiple continents 
(Figure S1).

3. Methods

3.1. Pixel-scale rate of spread calculation

We aimed to reconstruct the propagation of individual fires using MCD14 ML fire loca
tions, ultimately generating a large sample of pixel-scale fire spread observations dis
tributed globally. Our approach is based on the Fire Spread Reconstruction (FSR) method 
described by Loboda and Csiszar (2007). The FSR method uses the time series of active fire 
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detections to track the likely path of a fire boundary across the land surface through time 
within a specific active fire cluster (AFC). The most likely path is reconstructed by 
identifying the nearest neighbor within spatial and temporal search radii, beginning 
with the overpass of the first active fire detection and proceeding iteratively through 
each subsequent overpass. The pixel-scale speed of the fire between satellite observa
tions is then calculated based on the displacement between the locations of the active fire 
detections and the time between the overpasses. In the original implementation, thresh
olds of 2.5 km and 4 days were used as the spatial and temporal search radii, respectively. 
Despite its obvious shortcomings, the nearest neighbor assumption was adopted in the 
original algorithm implementation as a ‘reasonable assumption of fire behavior’ by the 
authors (Loboda and Csiszar 2007).

FSR has two components: (i) identification of active fire clusters and (ii) calculation of 
the pixel-scale CRoS (ρ). The first component of the FSR approach – identification of AFCs 
– is arguably too computationally intensive to apply globally using the Loboda and 
Csiszar (2007) method and benefits from a priori knowledge of specific AFCs. 
Unfortunately, as documented in other works (Boschetti et al. 2019), high-quality refer
ence datasets that capture fire activity over large areas are rare. Therefore, we used a data 
mining approach to identify AFCs representing distinct fire events from 2001 to 2019. 
AFCs consist of multiple active fire detections (i.e. including the location and time) 
corresponding to one distinct fire. These clusters were selected from a database of all 
MCD14 ML records using the density-based spatial clustering of applications with noise 
(DBSCAN) clustering algorithm (Ester et al. 1996) implemented in the Python Scikit-Learn 
library (Pedregosa et al. 2011). DBSCAN is a commonly used density-based clustering 
algorithm that identifies clusters of points by searching for core points and establishing 
their connectivity to non-core points based on distance. A point is determined to be a 
core point if it has more than the minimum number of neighbors within a specified search 
radius. Points located within the search radius of the core point are added to the cluster, 
and the process is repeated iteratively until all points are either assigned to a cluster or are 
determined to be noise if the point is not a member of a cluster.

DBSCAN therefore requires two parameters: a neighborhood radius and a minimum 
cluster core size required to identify a cluster’s core points. The neighborhood radius 
parameter (ε) was set to 8050, based on the ‘worst-case’ parameters for the FSR spread 
rate calculation (i.e. the 3-dimensional Euclidean distance of the spatial search radius of 
2,500 m and temporal window of 7,200 minutes, or 5 days). The FSR approach’s original 
thresholds informed the neighborhood radius parameter, i.e. 2.5 km and 4 days. However, 
we increased the temporal threshold to 5 days because the original FSR algorithm was 
implemented for Russia, which receives more satellite overpasses than lower-latitude 
regions of the world. The minimum cluster core size parameter – a threshold for the 
minimum number of active fire locations within the neighborhood radius required to 
form a cluster core – was set to 25 active fire locations. Increasing the minimum core size 
or decreasing the neighborhood radius favors the selection of larger fires, while decreas
ing the core size or increasing the search radius leads to over-aggregation of independent 
fires or inclusion of fires with too few data points to be representative of the CRoS. MCD14  
ML locations and observation times were used as input to the DBSCAN algorithm, with the 
location coordinates transformed from the geographic coordinate system to the world 
equidistant cylindrical projection to reduce distance distortions.

656 M. HUMBER ET AL.



The AFCs were used as input into the second component of the FSR approach to 
calculate the CRoS. Based on the approach outlined by Loboda and Csiszar (2007), 
the active fire locations within each AFC were analyzed iteratively to determine the 
most likely fire spread path, using the original 2.5 km spatial search radius but 
increasing the spatial search radius from 4 days to 5 days. The CRoS of each active 
fire location with a qualified nearest neighbor (within the spatial and temporal search 
radii) was calculated as the distance between the fire locations divided by the 
difference between the fire locations’ observation times. The calculated speed is 
omnidirectional, as it does not specify movement in a heading, flanking, or backing 
direction (Figure 3). A minimum threshold of 30 minutes between overpasses was 
implemented to reduce artifacts from Aqua and Terra overpasses at near coincident 
times. Such artifacts result in implausibly high speeds due to the random placement 
of the actual fire location within a ground sample, further exacerbated by the bowtie 
effect, that can make an active fire location appear to move a significant distance 
over a short period, resulting in high fire speed attributable to (random) view angle 
effects. The geodesic distance was calculated by applying the haversine transforma
tion to the fire latitude/longitude coordinates rather than using a projected coordi
nate system with significant distance distortions at high latitudes.

Figure 3. Illustration of the DBSCAN clustering and fire tracking approaches, with successive algorithm 
steps shown from left to right. Panel A shows two patches of MODIS fire pixels prior to clustering and 
tracking. Two fire clusters (orange and blue) are identified in panel B. MCD14ML detections from the 
first overpass are identified in each cluster in panel C the spread is “tracked,” assuming spread to the 
spread to the nearest (spatiotemporal) neighbour in subsequent overpasses. The spread tracking is 
repeated iteratively until no more neighbours are found within the spatiotemporal search radius.
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The CRoS for each cluster was defined by the median and 95th percentile speed for all 
pairs within a specific AFC. Each AFC was further associated with a biome, realm, and 
forest/mixed/non-forest label based on the mode of the active fire locations. The 95th 

percentile was chosen as an indicator of the maximum fire speed observed that is more 
robust to outliers and processing artifacts than the maximum itself. The calculation 
accounts for only the scalar speed and should not be confused with the rate of forward 
spread. AFCs were discarded if the fire duration was less than 48 hours to reduce the 
contribution of noisy clusters.

At this point, it is necessary to disambiguate the CRoS derived from polar-orbiting 
observations calculated in this study from field observations. Specifically, field observa
tions of the fire’s rate of spread pertain to the forward rate of fire spread during its most 
active period, over shorter time intervals, and with highly precise spatial and temporal 
measurements. In contrast, the active fire data derived from polar-orbiting sensors in 
this work are far less precise. Each MODIS sensor orbits the Earth approximately once per 
90 minutes and can take two days to image a specific location on the surface, assuming 
clear-sky conditions. Furthermore, the uncertainty of the location of the fire within the 
cell is a function of the scan angle, the temperature of the fire, and the size of the fire. At 
nadir viewing geometry, the uncertainty is limited to approximately 500-m, or half of the 
width of a 1-km cell, with the maximum uncertainty increasing as the scan angle 
increases. Satellite-based measurements therefore have an inherently higher spatial 
uncertainty and are integrated over longer time intervals compared to field-based 
measurements.

Consequently, there are two key distinctions between the spread rate metrics based on 
field observations and the metrics from the present method. First, the method described 
in this work does not specify the direction of the fire, i.e. it is not the forward rate of 
spread; rather, it is the overall spread rate in the heading, flanking, and backing directions. 
Second, the number of observations is constrained by the polar-orbiting nature of the 
satellites themselves, as illustrated in Figure 4. The number of times a location is imaged 
over a set period varies with latitude (and, as a corollary, so does time between observa
tions). The worst-case scenario occurs at the Equator, where some locations will only be 

Figure 4. Number of MODIS observations (Aqua and Terra) on 1 July 2020, derived from the MOD09GA 
and MYD09GA products. White indicates regions with no observations.
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observed twice per day (morning and night overpasses), resulting in a mean re-imaging 
time of 12 hours. On the other hand, a location near the poles can be observed several 
dozen times per day, resulting in a mean re-imaging time of less than one hour. Because 
fires do not sustain their activity peaks over long periods (as a result of diurnal cycles at 
the macro-scale and variability of moisture, fuel loads, topography, and other factors at 
micro-scales), this method is more likely to observe the actual peak of the fire activity at 
high latitudes than near the Equator due to the shorter time between observations and 
the higher number of observations.

3.2. Framework for accuracy assessment

Reference boundaries of known fires, determined by official or semi-official agencies 
(Table 2), were used to identify active fire locations belonging to the same fire event, 
analogous to the AFCs identified in the previous steps. Each combination of fire 
boundaries and active fire locations was visually inspected to ensure that the number 
of active fire detections was adequate to characterise the fire and that the boundary 
itself was of good quality. Active fire locations were considered to belong to the 
official/semi-official fire boundary if they overlapped the extent of the fire boundary 
and were detected on or between the start and end dates of the fire event, as 
reported by the agency. The set of active fire locations meeting these criteria forms 
the reference AFC.

The AFCs extracted using DBSCAN were compared to the reference AFC with the most 
common active fire locations. The success of the DBSCAN method was determined by the 
proportion of correctly selected active fire locations, i.e. the number of correctly identified 
fire locations relative to the set of unique fire locations in both the reference and extracted 
AFCs. To quantify the effects of the DBSCAN clustering accuracy on the CRoS, the CRoS of 
the extracted AFCs were compared to the CRoS of active fires overlapping the reference 
AFC dataset using the same FSR approach. The accuracy is reported using two metrics: the 
per cent of correctly identified active fire locations in an AFC and the active fire locations 
in the corresponding reference fire, and the CRoS calculated for corresponding AFC and 
reference data pairs.

4. Results

4.1. Global pixel-scale fire spread rates

The DBSCAN clustering operation identified a total of 168,777 AFCs from approximately 
90 million MCD14 ML fire detections. The pixel-scale fire spread rates derived in this work 
are presented in Figure 5 and Table 3. For comparison with other works, the 95th 

percentile CRoS, which more closely approximates the maximum fire spread rate, was 
calculated in addition to the median CRoS of each biome per realm (BpR).

In 22 out of 36 BpR with significant fire activity in forested and non-forested land, the 
95th percentile CRoS (used to approximate the maximum CRoS) in non-forested areas was 
greater than the 95th percentile CRoS in forested areas. Similarly, 26 out of 36 BpR 
demonstrated the same pattern when considering the median CRoS. The fastest fires 
were found in the Palearctic and Nearctic realms’ Temperate Grasslands, Savannas & 
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Figure 5. Median CRoS in areas with fire activity (>0.005 active fires km-1 yr-1) masked by (a) forest 
(>=90% tree cover), (b) mixed (tree cover >10% and <90%), and non-forested (<=10% tree cover) 
land covers. Only ecoregions with >0.05% mean annual burned area are shown, determined using the 
MCD64A1 Collection 6 Burned Area Product (Giglio et al. 2018).
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Shrublands biome (28.17 and 28.05 km day−1 respectively), due to the spread of massive 
fires observed yearly in Russia’s Jewish Autonomous Oblast along the Amur River in the 
Palearctic realm and yearly prairie fires observed in the central United States in the 
Nearctic realm. CRoS in Palearctic Temperate Grasslands, Savannas & Shrublands were 
among the fastest observed in this study due to large fast-moving fires in the Kazakh 
Steppe, which were also annual occurrences. Slower fires (less than .2 km day−1) were 
observed in BpR’s characterised by very low biomass (e.g. Deserts & Xeric Shrublands in 
the Neotropic and Palearctic realms) or high precipitation (e.g. Mangroves in Oceania). In 
the most fire-prone continents, Africa and Australia, the fastest fires, by median CRoS, 
were associated with high inter-annual variability in rainfall (Fatichi, Ivanov and Caporali 
2012), e.g. Deserts & Xeric Shrublands.

The distribution of pixel-scale fire spread rates is strongly right-skewed, favoring lower 
CRoS with few (but very fast-moving) outliers (Figure 6). In line with expectations, the 
CRoS tended to be highest for non-forest fires, followed by mixed forest/non-forest fires, 
while forest fires had the slowest CRoS, as indicated by the relative proportion of fires in 
higher CRoS bins from fastest to slowest.

Figure 6. Histogram of fire speeds in forested (top), mixed (middle), and non-forested (bottom) land 
covers.
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When adjusting for the distance between cells, these results show that, in most biomes, 
the cell-to-cell spread time, τ, for 500-meter MODIS cells is typically less than two days – 
well below many of the thresholds used previously (Table 1). Applying the τ thresholds, 
calculated from ρ values, to the burn patch extraction workflow (Figure 2) yields plausible 
results and, qualitatively, compares favorably to the Fire Atlas (Andela et al. 2019) in 
regions where fires overlap and merge throughout the year (Figure 7). To demonstrate 
the effects of different τ thresholds on burn patch extraction, the standard flood-fill 
algorithm described by Archibald and Roy (2009) was implemented for τ = {2, 4, 6, 8, 10, 
12, 14} days, spanning the range of values used in other studies (e.g. Table 1). The number 
of burn patches identified within the range of values was compared to the same method 
implementing the CRoS, ρ (km day−1), transformed into τ (days pixel−1), calculated for 
each BpR in this study. The results were aggregated to realms, excluding Antarctica. Given 
that the flood-fill algorithm is a complete segmentation of the pixels classified as burned 
by the MCD64A1 product, the number of burn patches identified per year decreases 
monotonically as τ increases (Figure 8). In the Afrotropic, Australasian, and Neotropic 
realms, the CRoS-based method behaves most similarly to τ = 2 days, while the 
Indomalayan, Nearctic, and Palearctic realms are more similar to τ = 4 days. In Oceania, 
the CRoS behavior is most similar to τ = 12 days. Even at the coarser realm levels, these 

Figure 7. Burn patch extraction examples for two scenes in 2015 from Kazakhstan (top row) and 
Australia (bottom row). Boxes (a) and (d) show the input MCD64A1 Collection 6 burned area product, 
boxes (b) and (e) show the Fire Atlas “perimeters” dataset for comparison, and boxes (c) and (f) 
illustrate the result of burn patch identification using the proposed CRoS threshold approach. For the 
Fire Atlas and CRoS-derived patches, each unique colour represents a distinct burn patch.
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differences underline the importance of selecting appropriate τ for different spatial 
locations to provide realistic representations of individual burn patches that are sensitive 
to changes in the underlying drivers of fire spread.

4.2. Clustering accuracy assessment

The correspondence between AFCs extracted using the DBSCAN method and the refer
ence dataset is depicted in Figure 9. Comparison to the independent reference data 
shows that the performance of the DBSCAN clustering method is best in the datasets 
covering North America, Australia, and Siberia. In contrast, the performance is more 
variable and less accurate in Portugal, Chile, Spain, and Brazil. The best performance is 
found in areas where the reference dataset was characterised by either large or isolated 
fires, while areas with smaller reference fires do not perform as well. Therefore, spatial 
resolution may be a limiting factor in the clustering operation.

The impact of errors in AFC identification on the CRoS is generally low, with a mean 
error of less than ±.09 km day−1 except in Canada and Alaska, where the mean error was 
−.96 km day−1 (Table 4). The impact of random errors at high latitudes (discussed in the 
Methods section) is a likely driver of the higher errors in Canada and Alaska. The 
Normalised RMSE (NRMSE) indicates that errors in the spread rate were less than 10% 

Figure 8. Mean number of burn patches identified per year for a range of threshold values (?) between 
2001 and 2020. The CRoS-based parameter is implemented at the BpR unit for the forest/mixed/non- 
forest cover types and adjusted for displacement of the sinusoidal projection using the haversine 
transformation, with results aggregated to the realm unit.
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for all reference datasets except Portugal and Chile. The CRoS error and the number of fire 
locations identified in the cluster were weakly correlated in all cases, indicating that the 
number of samples does not bias the CRoS.

The relationship between the CRoS of AFCs and reference fires is shown in Figure 10. 
The overall agreement between reference and observed values is high (R2 = .82), though 
the fastest-moving fires’ speed tends to be somewhat underestimated using the DBSCAN 
clustering method, resulting in an overall slope of .91.

5. Discussion and conclusions

In this work, we estimated pixel-scale fire CRoS for different biomes in forested, mixed, 
and non-forested land covers. This variable is suitable for improving fire patch extraction 
algorithms using coarse resolution burned area products. Individual fire events were 

Figure 9. Box plots of the percent of active fire locations correctly identified by AFCs compared to 
reference datasets. The sample size for each dataset can be found in Table 3.

Table 4. Accuracy assessment of the rate of spread from the DBSCAN clustering method and reference 
fire boundaries.

Location # Fires Mean Error (km day−1)
RMSE 

(km day−1) NRMSE (%) Error-Size Correlation (r)

All 2229 −.06 0.39 2.58 −.12
Australia (Data SA) 225 −.04 0.23 6.96 0.00
Australia (NAFI) 520 −.03 0.23 3.52 −.08
Brazil 44 −.11 0.46 8.59 −.19
Canada, AK (ABoVE) 542 −.96 0.25 3.00 −.14
Chile 29 0.04 0.24 18.68 −.04
CONUS (MTBS) 583 −.05 0.54 5.97 −.03
Greece 35 0.01 0.36 7.19 0.14
Portugal 131 −.09 0.70 13.36 −.02
Siberia 23 −.01 0.20 8.79 0.02
Spain 96 0.03 0.48 6.77 0.04
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defined by extracting AFCs by mining the entire MCD14 ML archive using the DBSCAN 
clustering algorithm. The CRoS was calculated using the FSR approach (Loboda and 
Csiszar 2007) applied to each AFC. The median and 95th percentile CRoS’s were presented 
for each terrestrial biome with fire activity, and the accuracy of the CRoS was evaluated by 
comparison to active fires within independently derived reference fire boundaries.

CRoS values calculated in this work generally agree with other published works 
(McCaw et al. 2012; Dupire et al. 2019; Gould and Sullivan 2020), and these results 
replicate the original algorithm implementation in Russia by Loboda and Csiszar (2007). 
Cruz et al. (2018) reviewed CRoS ranges from field observations of wildfires and prescribed 
fires, compiling a comprehensive list of previously published studies in different biomes/ 
realms, which vary from .1–20 m min−1 (~.15–28.8 km day−1) in forests to .2–160 m min−1 

(~.3–230.4 km day−1) in grassland. However, comparisons of spread rates observed using 
our method and those obtained by field observation should be viewed critically because 
the measurements are made at fundamentally different spatial and temporal scales with 
large differences in the instruments’ precision. Key differences between the two types of 
observations include: field studies may seek out powerful and faster-moving fires (McCaw 
et al. 2012); field studies may observe fires over smaller distances and shorter time 
intervals than can be detected by MCD14 ML (Cruz et al. 2010; Johnston et al. 2018; 
N’Dri et al. 2018); other studies measure fires during the peak of the fire season and in the 
middle of the day when fires are most intense (Sullivan 2010; McCaw et al. 2012) while our 
study also includes fire spread overnight and outside of the main burning season 
(Matthews et al. 2012); and, as in the original algorithm implementation, we assume 
active fires spread to their nearest neighbor in subsequent satellite overpasses – while we 

Figure 10. Scatterplot of the median spread rate of individual fires for reference and observed AFCs.
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agree this is a reasonable assumption, it is an omnidirectional measure of the fire spread 
that necessarily results in fire spread covering the shortest possible distance over time and 
will therefore tend to underestimate the true speed of the fire spread.

In light of these findings, we also acknowledge some potential future improvements 
that could be made to this method. One such improvement would be to normalise the 
time and space dimensions of the active fire observations to prevent over-weighting the 
time dimension in the DBSCAN search radius parameter. While it is unlikely that the non- 
normalisation of the input data biased the results because of the CRoS calculation 
restrictions, more clusters could likely have been detected overall using a more well- 
balanced time-space threshold. Additionally, an unknown level of error can be attributed 
to the MODIS sensor’s coarse spatial resolution. As the length of the newer Visible Infrared 
Imaging Radiometer Suite (VIIRS) archive increases and the associated active fire products 
mature, the finer 375-m spatial resolution of the VIIRS instrument would likely improve 
these results. Unfortunately, any such improvements would have to be balanced against 
the loss of the Terra-like morning overpass.

Similarly, there is evidence that the performance of the GFC dataset used to stratify the 
forest/mixed/non-forest land cover types may vary depending on the type of tree cover 
loss (harvest or fire) in some regions (Guindon et al. 2018). It is, therefore, possible that the 
CRoS calculated in this work may propagate underestimation errors related to forest 
regrowth in the GFC product, causing forest fires to be included in the mixed or non- 
forest classes.

A limitation of this work stems from the use of polar-orbiting satellite observations. The 
CRoS calculated near the poles will more closely replicate field observations taken at the 
fire activity peak because the time between images is short, and there are more observa
tions in total. In contrast, the values calculated near the Equator, with more time between 
observations, will average short periods of high fire activity with long periods of low fire 
activity, likely biasing the CRoS toward the low end of observed values. Geostationary 
observations could solve this problem, but no reliable, harmonised product with global 
coverage exists at the time of this work.

The method presented in this work uses a subset of the total available data, derived by 
discarding active fire detections for which satellite overpasses were temporally close or 
where the sensor scan angle was unfavorable to reduce the effects of the random 
locations of fires within the sensor’s instantaneous field of view (IFOV). Such concessions 
are necessary because, in a worst-case scenario, the same fire may be observed by near- 
coincident satellite overpasses at far off-nadir viewing geometry. In such a scenario, the 
actual displacement of the fire between observations would be near-zero, and the time 
between observations would also be near-zero. However, random effects can lead to an 
observed displacement of several kilometers; thus the numerator of the rate, consisting 
almost entirely of noise, leads to high calculated CRoS while the actual CRoS is close to 
zero. In effect, removing such data points leads to metrics calculated over larger distances 
where the signal (distance between active fires) is much greater than the noise (random 
location of actual active fires within the IFOV). This theoretically reduces the sensitivity of 
our approach over short timeframes, but in practice, this is outweighed by the reduction 
of implausibly high CRoS values based on observation noise.
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This work also relies on the selection of two free parameters, the neighborhood radius 
parameter (ε) and the minimum cluster core size. The thresholds used in this work (8050 
and 25, respectively) were selected based on visual inspection of many different thresh
olds. In extreme cases, smaller minimum cluster core sizes and/or larger radius parameters 
caused all fire activity in areas with high fire activity (e.g. Africa and Australia) to be 
selected into a single fire event each fire season. On the other hand, larger minimum 
cluster core sizes and/or smaller radius parameters resulted in significant increases in the 
number of fires excluded from the dataset in the mid-latitudes, where the number of daily 
satellite overpasses and fire activity are lower.

Ultimately, the goal of this work was to provide a global baseline estimate of the CRoS 
of wildfires at coarse spatial resolution (pixel scale) to improve the delineation of indivi
dual fires from global burned area products with flood-fill-based algorithms. Our finding 
that the value of τ, derived from coarse resolution observations, is less than two days for 
many regions suggests that flood-fill fire extraction algorithms that apply a uniform 
temporal parameter are likely using values that are too large in most of the world, 
which can lead to over-aggregation of distinct burns into one fire. The CRoS values in 
this paper can provide a basis for modifying the parameter regionally and based on land 
cover type. The active fire product used in this study can be considered independent of 
the burned area products used for burn patch extraction in downstream workflows. 
Consequentially, these results can be used to improve the accuracy of fire extraction 
algorithms by providing location-adjusted estimates of cell-to-cell fire spread based on 
historical observations.
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