
International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102443

Available online 18 July 2021
0303-2434/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Validation of MCD64A1 and FireCCI51 cropland burned area mapping 
in Ukraine 

Joanne V. Hall *, Fernanda Argueta, Louis Giglio 
University of Maryland, Department of Geographical Sciences, 2181 LeFrak Hall, College Park, MD 20742, USA   

A R T I C L E  I N F O   

Keywords: 
Burned area 
Crop residue burning 
MODIS 
Ukraine 
Validation 

A B S T R A C T   

Small fires represent an important under-represented fire type within active fire and burned area datasets in 
addition to fire emission inventories, especially in regions with substantial agricultural areas. In order to improve 
regional and global burned area and fire emissions inventories, active fire and burned area algorithm developers 
are focusing on improving the mapping accuracy of the timing and spatial extent of these small fires. However, 
product developers have often relied on burned area validation methods that are designed for larger wildfires, 
and which are therefore not appropriate for these small fire types. Specifically, validation of crop residue burns 
using pre- and post-Landsat and Sentinel imagery (as recommended by the Committee on Earth Observing 
Satellites Working Group on Calibration and Validation (CEOS) Land Product Validation protocol) breaks down 
because the short duration (less than 1 day) between the burn and the subsequent field plowing removes the 
burned signature before the next sensor overpass. Here we describe an alternate approach that allowed us to 
rigorously validate two widely available, coarse-resolution global burned area products — MCD64A1 and 
FireCCI51 — in cropland through using exhaustively-mapped field-level burned area reference maps produced 
for seven reference areas in Ukraine in 2016 and 2017. Our results highlight the overall high omission errors 
(MCD64A1: 71–76% and FireCCI51: 63–99%) and commission errors (MCD64A1: 62–81% and FireCCI51: 
49–93%) for both products within cropland, while also demonstrating the difficulty of mapping crop residue 
burned area within the spring, pre-planting mapping period compared to the summer, post-harvest mapping 
period. Product-specific artifacts and errors are also demonstrated including the confusion with the larger har
vest spectral signal (MCD64A1) and the large swaths of unmapped pixels clustered in regular geometric shapes 
(FireCCI51). These validation results will be used to help guide the upcoming MCD64A1 Collection 7 burned area 
product improvements within cropland.   

1. Introduction 

The importance of accurately representing small fires within burned 
area (BA) and active fire (AF) datasets has been garnering increased 
attention within the fire-science community. Over the past several years, 
attempts have been made with varying success to improve the repre
sentation of small fires within global BA datasets (e.g., Randerson et al., 
2012; Ramo et al., 2021; Roteta et al., 2019; van der Werf et al., 2017). 
Small fires represent an important under-represented source within fire 
emission inventories, especially in regions with substantial agricultural 
areas. Although small fires emit relatively low quantities of emissions, 
collectively they have impacts that far exceed the fire location (e.g., Hall 
and Loboda, 2017; Zhou et al., 2018). In particular, the proximity of 
inherently-small crop residue fires to urban locations, and the recurring 

nature of these managed fires, can negatively impact air quality and 
human health (e.g., Adler, 2010; Chakrabarti et al., 2019). 

Accurately mapping the extent of small fires and subsequent emis
sions is a crucial next step in improving regional and global BA and fire 
emissions inventories. Although there are regional-based studies aimed 
at improving crop residue BA and emissions (e.g. Liu et al., 2020a; Hall 
et al., 2021), there has also been a move toward improving the small fire 
accuracies within global-based BA algorithms (e.g., Giglio et al., 2018) 
— a key input in several fire emission databases. According to the Global 
Fire Emissions Database with small fire boost (GFED4.1s), a large pro
portion of small fire BA is found in temperate and sub-tropical agricul
tural regions (van der Werf et al., 2017). Yet, BA validation within 
agricultural and cropland regions is typically not included in larger 
global studies (e.g., Boschetti et al., 2019) or is conducted with methods 
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that are inappropriate for the short-lived, managed small fires that are 
characteristic of agricultural burning (e.g., Padilla et al., 2015). 

Quantifying the accuracy of mapped BA, regardless of size, relies on 
extensive validation efforts designed with the specific fire type in mind. 
The current Committee on Earth Observing Satellites Working Group on 
Calibration and Validation (CEOS) Land Product Validation (LPV; 
https://lpvs.gsfc.nasa.gov/) protocol recommends using a higher reso
lution paired image approach (pre- and post-fire) to map the BA between 
the two acquisition dates (Boschetti et al., 2009). Although this method 
works very well for wildfires and larger prescribed burns (e.g., Boschetti 
et al., 2019; Padilla et al., 2015) it breaks down within cropland regions 
— a quintessential example of a small fire type. 

Compared to the pixel size of moderate (20–30 m) and coarse (250 m 
− 1 km) resolution sensors, small fires only cover a fraction of the pixel 
area and often their optical burn signatures are not sufficiently distinct 
to be mapped with coarser resolution imagery. In addition, active fire 
products from polar-orbiting satellites are likely to miss such fires due to 
the limited diurnal sampling afforded by such platforms. Moreover, 
there are several limitations of mapping crop residue BA including 1) 
short duration fires with ensuing field plowing that removes the burned 
signature before the next sensor overpass (e.g., Hall et al., 2016, 2021), 
2) partial field or piled residue burning that leads to less intense fires 
that are missed by coarse resolution sensors (e.g., Kulkarni et al 2020; 
Lasko et al., 2017), and 3) increased BA fragmentation due to smaller 
landholdings within cropland regions (e.g., India - Liu et al., 2019; China 
- Zhang et al. 2018). These are only a few examples of why crop-residue 
BA products are prone to inaccuracies which lead developers of global 
BA products to accept higher small-fire omission errors rather than relax 
algorithm mapping thresholds and suffer increased commission errors 
throughout all land cover types (Roy and Boschetti, 2009). For example, 
the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) 
MCD64A1 Collection 6 burned area product (Giglio et al., 2018) 
improved the representation of small-fire BA overall, but at a cost of an 
increased commission error from confusion with the larger harvest 
spectral signal (Giglio et al., 2018; Zhang et al., 2018). 

With the release of the European Space Agency Climate Change 
Initiative (CCI) Programme’s MODIS-based 250-m FireCCI51 BA prod
uct (Chuvieco et al., 2018; Lizundia-Loiola et al., 2020), which is tar
geted to capture small fires, there have been several studies that have 
compared and validated the MCD64A1 Collection 6 and FireCCI51 
global BA products in various land cover types including those with 
frequent small (but not cropland) fires (e.g., Campagnolo et al., 2021; 
Fornacca et al., 2017; Humber et al., 2019; Shimabukuro et al., 2020; 
Valencia et al., 2020). A common theme throughout several of these 
papers is related to the differences in how these two hybrid BA algo
rithms utilize AF data to map BA pixels, and how these differences can 
lead to contrasting accuracy metrics. Overall, there seems to be an 
agreement that the improved algorithm in the MCD64A1 Collection 6 
product outperforms the previous 5.1 generation for overall burned area 
mapping. However, the spectral confusion with harvest combined with 
the coarser resolution 500-m pixels reduces the mapping accuracy in 
cropland and other regions of predominantly small fires (e.g., Fornacca 
et al., 2017; Humber et al., 2019; Liu et al., 2019; Shimabukuro et al., 
2020; Zhang et al., 2018; Zhu et al., 2017). In contrast, Campagnolo 
et al. (2021) found that the finer 250-m bands used for the FireCCI51 
product helped improve the accuracy when detecting smaller fires 
(0–250 ha), but the lack of spectral range in those bands caused an in
crease in omission errors for larger wildfires (>1000 ha). In addition, 
several studies have also noted the low temporal accuracy and bias to
wards the AF dates in the FireCCI51 product’s mapped BA date (e.g., 
Lizundia-Loiola et al., 2020). 

With the steady publication of new BA products — some even 
designed for croplands (e.g., Wang et al., 2018) — and continual im
provements within existing BA products, the lack of appropriate BA 
validation data and methods within cropland regions is both problem
atic and concerning. In particular, there are several countries with high 

concentrations of cropland area and long-standing histories of open- 
burning of crop residue for which remotely-sensed BA data are being 
consulted in policy-making decisions. For example, Ukraine consists of 
~50% cropland area with very high levels of open-burning in March and 
April (pre-planting) and July - September (post-harvest; primary 
burning season) (Hall et al., 2021). Since the majority of open-burning in 
Ukraine is related to agricultural burning (e.g., crop residue, pastures, 
etc.) it is imperative to understand if this burning is captured accurately 
within BA products and fire emission databases. 

We report here the first attempt to rigorously validate two widely 
available, coarse-resolution global burned area products — MCD64A1 
and FireCCI51— in cropland using our novel database of exhaustively- 
mapped field-level burned area reference maps produced for seven 
reference areas in Ukraine in 2016 and 2017. The goal was to quantify 
the accuracy metrics of the two products within a densely-packed, large 
cropped field region to illustrate how well these MODIS-based BA 
products map small fires in an optimal cropland burning location given 
their coarse resolution. 

1.1. Study area 

Ukraine is one of the major global agricultural producers and ex
porters with ~50% of the land area used for arable production. The 
predominant soil type, Chernozem or “black soil”, is a fertile soil rich in 
humus (1.5–6% range; personal communication Dr. S. Maxim, National 
Scientific Center, Institute for Soil Science and Agrochemistry Research, 
Ukraine) and other essential plant nutrients which often leads to 
increased agricultural yields. This soil, along with the temperate conti
nental climate, has allowed Ukraine to become one of the world’s top 
producers in sunflowers, corn/maize, wheat, sugar beet, barley, soy, and 
rapeseed. However, winter wheat (~17% total land area in 2017), 
sunflower (~14% total land area in 2017), and maize (~11% total land 
area in 2017) make up the majority of Ukraine’s cropland area (Kussul 
et al., 2017). 

The winter wheat areas are located within the southern and eastern 
oblasts (i.e. administrative regions), the maize areas are located within 
the northern and western oblasts, while, sunflower crops are planted 
throughout Ukraine, often on the same fields as wheat or maize (Hall 
et al., 2021). Since farmers typically do not burn sunflower residue the 
two distinct burning peaks throughout the year are associated with 
preparing fallow fields for planting maize or sunflowers following the 
spring melt (March and April) or for removal of crop residue (i.e. winter 
wheat between July - September) before planting the next crop rotation. 

2. Data and methods 

2.1. MODIS burned area data 

The MODIS burned area products we validated consist of 1) NASA’s 
MODIS Collection-6 MCD64A1 burned area product (Giglio et al., 2018) 
and 2) the FireCCI51 pixel-level burned area product developed within 
the European Space Agency’s CCI Fire Disturbance project (Chuvieco 
et al., 2018). Unlike the 500-m MCD64A1 product, the FireCCI51 
product is generated at a spatial resolution of 250 m. 

The MCD64A1 Burn Date layer was used to identify burned pixels 
(1–366), unburned pixels (0), unmapped pixels (− 1), and water pixels 
(− 2) during specified validation periods in 2016 and 2017 (Section 2.2). 
The FireCCI51 product uses a similar convention for its Julian Day of First 
Detection layer, from which we extracted the burn date (1–366) along 
with the unburned pixels (0), unmapped pixels (− 1), and unburnable 
pixels (− 2) which include water bodies, urban areas, and snow. While 
the MCD64A1 product provides a pixel-level burn-date uncertainty, to 
ensure fairness in the comparison we did not use this layer since the 
FireCCI51 product does not provide comparable information. For the 
spatial accuracy assessment, the pixels of both products were resampled 
(nearest neighbor) to a 20-m grid as dictated by the validation reference 
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data (Section 2.2). Each 20-m resampled MCD64A1 and FireCCI51 
burned grid cell was assumed to have 100% BA, and all resampled grid 
cells that overlapped with non-cropland areas of the reference imagery 
were excluded from our analysis. 

2.2. Cropland burning reference areas 

Seven reference areas within Ukraine’s croplands that cover almost 
5% of Ukraine’s land area were manually digitized and classified to 
create highly detailed burned versus unburned cropland field maps 

Fig. 1. Seven mapped reference areas within Ukraine cropland (A-G). The inset table shows the start and end mapping date for each reference area.  

Fig. 2. Four enlarged panels illustrate the detail within springtime, predominantly maize areas (Location A; top left and Location B; top right), and within sum
mertime predominantly winter wheat areas (Location E; bottom left and Location G; bottom right). 
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(42,958 fields in total) over a range of dates in 2016 and 2017 (Fig. 1). 
These reference areas were created via exhaustive visual interpretation 
of all available 20-m Sentinel-2 Multi-Spectral Instrument (MSI), 30-m 
Landsat-8 Operational Land Imager (OLI), and 3-m Planet imagery 
(www.planet.com), in conjunction with filtered Visible Infrared Imaging 
Radiometer Suite (VIIRS) AF point data (VNP14IMGML; Schroeder 
et al., 2014) and selected ground-based observations provided by a local 
agricultural expert. The mapping locations and dates were chosen to 
give a representative sample of the spring and summer crop residue 
burning seasons in Ukraine. Dates were chosen to represent either the 
first half of the burning season or the second half through plotting the 
distribution of VIIRS AF points throughout 2016 and 2017. For example, 
in region F, the peak of burning occurred on 27 July 2017, therefore, the 
mapping period was chosen from 1 June 2017 until the peak. Whereas, 
in region D, the peak occurred on 1 August 2016, therefore the mapping 
period was chosen to represent the burning that occurred from the peak 
until 31 August 2016. 

Each digitized polygon was attributed with the following field clas
sification: 1 = active flame/smoke or BA with corresponding VIIRS AF 
polygon (i.e. an overlapping polygon with a date aligned with the visual 
change on the field); 2 = definite BA but with no flame/smoke or AF 
point; 3 = ambiguous (a distinct darkening occurred on the field, but the 
analyst is unsure if the field was burned then plowed or only plowed); 4 
= definitely unburned; 5 = not cropland or fields are too small that land 
cover conditions were difficult to determine on very high resolution (3 
m) imagery (Fig. 2). Each Class 1, 2, and 3 field was also attributed with 
the fraction burned (see Hall et al., 2021 for details). For the sake of 
clarity, the classes will hereafter be referenced using the following 
naming convention: definite burn (Class 1 and Class 2), possible burn 
(Class 3), unburned (Class 4), and non-cropland/other (Class 5). 

All regions had at least daily Planet imagery – in some regions both 
morning and afternoon overpasses were available – as well as the 
accompanying Sentinel-2 and Landsat-8 images. None of the regions 
experienced persistent cloud cover, therefore, analysts were able to view 
the fields almost daily during the mapping periods. Any instances of 
distinct darkening on the field where the cause could not be determined 
(i.e. timing of burning not coinciding with the overpass or due to cloud 
cover on the day of burning) resulted in a possible burn classification that 
we use to weigh the impact of our uncertainty. Although there is a larger 
proportion of reference fields within the possible burn class during the 
spring compared to the summer, the vast majority of reference fields 
(95% spring and 98% summer) do not fall within this ambiguous class. 

Although 3-m Planet data was a primary source for the visual 
interpretation, the fields were hand-drawn using Sentinel-2 (20-m) im
agery as the base map. Therefore, for this study, the digitized polygons 
were rasterized to a 20-m comparison grid for the validation assessment. 
Each 20-m grid cell was attributed with the appropriate class and the 
fraction burned (if applicable) using a maximum-area cell assignment 
rule. All grid cells assigned as non-cropland/other were removed from 
the analysis. Minimum and maximum reference BA, respectively rep
resented by the definite burn class by itself, and the definite burn plus the 
possible burn classes in combination, were calculated by multiplying the 
total polygon/field area by the fraction burned. The subsequent analysis 
was performed within each region A–G individually and also grouped 
into seasonal outputs: Spring (A and B) and Summer (C–G). 

2.3. MODIS and VIIRS active fire products 

The 1-km MODIS (MCD14ML C6 V3; Giglio et al., 2016) and the 
VIIRS 375-m (VNP14IMGML C1 V2; Schroeder et al., 2014) AF products 
were downloaded from the University of Maryland’s FTP server (sftp:// 
fuoco.geog.umd.edu; Giglio et al., 2020). The AF points were buffered 
using a variable buffer radius (based on the location within the swath 
grid) to account for the variation in footprint across the MODIS and 
VIIRS scans. The AF points were visually analyzed and removed from the 
analysis if they were not associated with cropland burning. Each active 

fire product contains a number of variables including latitude, longi
tude, date, and UTC time. The daily AF count within each location’s 
mapping period was summed and compared to the daily mapped BA 
from the MCD64A1 and FireCCI51 products. The AF products offer both 
an accurate time of burning and are also able to identify smaller fires 
than the BA products (Giglio et al., 2003; Oliva and Schroeder, 2015). 

2.4. Confusion matrix and accuracy metrics 

We performed an assessment of the accuracy of the spatial patterns of 
BA by computing an error matrix to quantify the correspondence of the 
burned and unburned pixels reported in the two MODIS-based products 
with the gridded reference pixels. Each reference area grid cell has an 
associated BA percentage, therefore, a sensitivity analysis was per
formed to quantify the potential range of accuracy metrics within the 
analysis based on thresholding the reference BA percentage values for 
each reference area (A–G) and the combined seasonal outputs: Spring (A 
and B) and Summer (C–G). Several BA percentage threshold ranges were 
chosen for the sensitivity analysis: 1–100%, 25–100%, 50–100%, 
75–100%, and 100% BA reference grid cells only. Since the accuracy 
metrics across the range of BA percentage thresholds did not vary sub
stantially, we ultimately chose a reference BA percentage threshold of 
50–100% to represent the minimum BA percentage per field because i) 
the majority of reference field polygons within each reference region 
contain 50% or more BA and therefore give a representative sample, ii) a 
field (often only a few MODIS pixels in size) with less than half of its area 
burned (e.g., some fields contain only 1% BA as seen with 3-m Planet 
data) will more likely be missed by the MODIS-based BA products and 
therefore will put an unrealistic expectation on these coarse BA prod
ucts, iii) the MODIS-based product pixels are assumed to contain 100% 
BA and therefore only including reference burn grid cells with 50% or 
more BA will help reduce the potential bias in commission error from the 
larger MODIS pixels, and iv) it reduces the impact of the inherent 
fuzziness in the smallest resolvable burn patch within our reference 
dataset given that the fields were classified using imagery having three 
different spatial resolutions (3 m, 20 m, and 30 m). Some fields, there
fore, might be classified using the super-resolution of Planet (i.e. small 
burn patches only a few Planet pixels large) while others may be clas
sified via the 20-m or 30-m moderate resolution imagery. 

The error matrices were produced by comparing the area and pro
portions of agreement and disagreement between the burned and un
burned pixels within the gridded 20-m reference pixels (minimum and 
maximum BA) and the resampled global BA products (Table 1). The 
“unburned” grid cells in the global BA products included values 

Table 1 
Confusion matrix elements describing the area (Aij) [km2] or the proportion (Pij) 
[0–1]   

Reference Data   

Burned Unburned 

Classified Data Burned A11 (P11) A12 (P12)  
Unburned A21 (P21) A22 (P22)  

Table 2 
Unburnable (class: − 2) 20-m grid cells with an associated reference field grid 
cell. Units: km2 and percentage of total reference field grid cells.  

Region FireCCI51 (km2) MCD64A1 (km2) 

A 8.5 (0.23%) 0.0 (0.0%) 
B 8.5 (0.24%) 0.0 (0.0%) 
C 3.3 (0.22%) 0.0 (0.0%) 
D 4.9 (0.20%) 0.0 (0.0%) 
E 8.1 (0.34%) 0.0 (0.0%) 
F 3.6 (0.30%) 4.4 (0.36%) 
G 7.1 (0.27%) 4.3 (0.17%)  
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0 (unburned) and − 2 (unburnable). The following error analysis follows 
the same conventions and notations as outlined within Boschetti et al., 
(2019). Since there were no unmapped (− 1) regions within the valida
tion areas, and the number of unburnable (− 2) grid cells was extremely 
small (Table 2), the confusion matrices only consider the burned and 
unburned classes. 

Error matrices were calculated for each region A–G separately and 
also combined seasonally. Five commonly used accuracy metrics 
(equations (1)–(5)) were calculated using the proportions calculated in 
Table 1 (Padilla et al., 2014, 2017; Boschetti et al., 2016, 2019): Overall 
Accuracy (OA), Omission Error Ratio (Oe), Commission Error Ratio (Ce), 
the Relative Bias (relB), and the User’s Accuracy for the burn category 
(UABurn). 

OA = P11 +P22 (1)  

Oe =

(
P21

P11 + P21

)

(2)  

Ce =

(
P12

P11 + P12

)

(3)  

relB =

(
P21 − P12

P11 + P21

)

(4)  

UABurn =

(
P11

P11 + P12

)

(5) 

For illustration purposes, only the seasonal confusion matrices and 
accuracy metrics for reference grid cells with 50–100% BA values are 
shown in Section 3.3 (Tables 4 and 5). 

3. Results 

3.1. Unmapped & unburnable classes assessment 

Both products supply a value to represent an unmapped class (− 1) 
for the case of insufficient input data, and a separate value to represent 
water (− 2). The FireCCI51 product broadens the water class (− 2) 

Fig. 3. FireCCI51 unmapped (Class − 1; red) pixels in December 2016 (top row) and December 2017 (bottom row). The enlarged inset maps (black squares in the left- 
hand column) are shown in the right-hand column. The MODIS tile boundary is shown as a dashed grey line. For reference, Ukraine has been highlighted in bold 
black within each figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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further to include land pixels deemed unburnable (e.g., urban areas). 
A crucial first step in any assessment is to visualize the data, a process 

which facilitates the interpretation of results and helps identify data 
artifacts that may lead to incorrect conclusions. A visual examination of 
both products found large swaths of unmapped pixels (− 1) within the 
FireCCI51 product that were often artificially cut off along MODIS tile 
boundaries (Fig. 3; top right) and meridians of longitude (Fig. 3; bottom 
right). Despite the large size of these artifacts, none of the seven Ukraine 
reference areas contained this unmapped class for either product. This 
same tiling artifact was recently highlighted by Liu and Crowley (2021) 
over several cropland regions, including Ukraine and southern Russia. 

Analysis of the water/not burnable class (− 2) found only a small 
percentage (Table 2) of the 20-m reference pixels allocated as a field 
were designated as unburnable by the two products. While the majority 
of these omissions occurred in regions F and G situated along the 
southern coastline, the FireCCI51 product mapped field pixels, which 
are in principal potentially burnable, as unburnable in every region. This 
characteristic is presumably the result of an overly broad definition of 
unburnable surfaces used within the FireCCI51 mapping algorithm. 

3.2. Total burned area in reference areas 

We calculated and compared total BA for the two MODIS-based 
products and the minimum and maximum reference BA layers (all BA 
% and fields with > 50% BA) for each reference region using the 20-m 
gridded layers. In total, the FireCCI51 product mapped 464 km2 to 
798 km2 less BA than the minimum and maximum reference BA totals 
(306 km2 − 609 km2 compared to reference fields with > 50% BA), 
respectively. Whereas, the MCD64A1 product mapped 106 km2 more BA 
than the minimum reference BA and 228 km2 less than the maximum 
reference BA (264 km2 more BA than the minimum reference BA and 39 
km2 less compared to reference fields with > 50% BA). However, when 
comparing the total BA per region, no distinct pattern seems to emerge 
between the two products (Table 3). For example, in regions A, B, C, and 
E, the MCD64A1 product maps more BA than the FireCCI51 product, 
whereas, in regions D, F, and G, the converse is true. We observed a 
particularly high omission of burned area for the FireCCI51 product in 
region B (Fig. 4), but for no reason that could be discerned from an 
examination of the product’s supplementary data layers. 

Table 3 
Total burned area (BA; km2) per reference region. Total BA for reference fields 
with 50–100% BA are shown in parentheses.  

Region Minimum 
Reference BA 
(Definite Burn) 

Maximum Reference 
BA (Definite Burn +
Possible Burn) 

MCD64A1 
BA 

FireCCI51 
BA 

A 42(37) 78(66) 65 11 
B 268(240) 364(324) 550 59 
C 398(367) 424(392) 362 230 
D 253(230) 313(287) 245 333 
E 165(156) 202(189) 144 76 
F 134(125) 154(143) 80 103 
G 645(592) 704(649) 565 629 
Total 1905(1747) 2239(2050) 2011 1441  

Fig. 4. Location B (March 2017) maximum reference BA fields overlaid with MCD64A1 (left; yellow) and FireCCI51 (right; purple). For illustration, the reference 
area field polygons with 50% or more BA are represented in black and less than 50% in dark grey. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 4 
Seasonal confusion matrices reported in area (km2) for the two extremes of the reference imagery (Min. BA and Max. BA) as determined by the treatment of the possible 
burn reference class.   

Product A11 A12 A21 A22   

Min. BA Max. BA Min. BA Max. BA Min. BA Max. BA Min. BA Max. BA 

Spring MCD64A1 97 112 420 405 237 358 4296 4175  
FireCCI51 5 5 59 59 328 464 4634 4498 

Summer MCD64A1 440 478 827 789 1208 1373 9910 9746  
FireCCI51 606 648 658 616 1042 1202 10,056 9895  

Table 5 
Seasonal accuracy metric ranges (expressed as percentage) derived using 
equations (1)–(5). The uncertainty range of the accuracy assessment is based on 
the inclusion of the possible burn class with the definite burn class (maximum) 
compared to only using the definite burn class (minimum).   

Product OA Oe Ce relB UABurn 

Spring MCD64A1 85–87% 71–76% 78–81% − 55 to 
− 10% 

19–22%  

FireCCI51 90–92% 99–99% 92–93% 81–86% 7–8% 
Summer MCD64A1 83–84% 73–74% 62–65% 23–32% 35–38%  

FireCCI51 85–86% 63–65% 49–52% 23–32% 48–51%  
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3.3. Confusion matrix and accuracy metrics 

Quantifying the total BA per region is useful for understanding the 
broader comparison between the two global products, but it does not 
assess the accuracy of the spatial patterns. Assessment of the corre
spondence between the burned and unburned pixels reported in the two 
MODIS-based products with the gridded reference pixels (BA > 50%) is 
illustrated through seasonal confusion matrices (Table 4) and seasonal 
accuracy metric ranges (Table 5). 

Although the OA of both products is relatively high (>80%), this 
metric is heavily influenced by the product’s ability to map the un
burned class. The Oe and Ce values are, in contrast, more informative of 
the products’ ability to map small burns. Here the Oe and Ce values were 
high for both products, a result that is not unexpected due to the nature 
of cropland burning. Equally unsurprisingly, the Spring Oe and Ce 
values were higher than the Summer values as the visual (3-m Planet 
imagery) and the spectral distinction between BA and plowed fields is 
harder to discern due to the wet (post-snow melt) field conditions (e.g., 
Hall et al., 2016). Specifically, in Ukraine, springtime cropland burning 
is associated with burning fields in preparation for planting corn/maize, 
whereas, in the summertime the burning is associated with post-harvest 
wheat residue burning (Hall et al., 2021; Korontzi et al., 2006). This 
visual and spectral change between a dry, fully-vegetated wheat field in 
the summer and a harvested (and then burned) field is more distinct and 
easier for the BA algorithms to detect, which is clearly represented by 
the overall lower summertime Oe and Ce values for both products 
(Table 5). Interestingly, although the MCD64A1 product has a fairly 
comparable Oe and Ce (more so for the Oe) between both seasons, the 
FireCCI51 product has a very distinctive increase in both the Oe and Ce 
values in the spring reference areas. The higher Oe in spring for the 
FireCCI51 product seems to be related to the unexplained lack of BA 
mapped within both spring reference areas at Locations A and B (Fig. 4, 

Table 3). 
The relative bias (relB) quantifies the degree to which the MODIS- 

based BA products underestimate (negative bias) or overestimate (pos
itive bias) BA relative to the reference BA while allowing errors of 
commission to offset errors of omission. The relative bias of the two 
products was virtually identical for the summer burning season but 
showed substantial differences in the spring. During this season the 
largest bias for MCD64A1 occurred with respect to the minimum 
reference BA layer (definite burn class only), with MCD64A1 significantly 
underestimating the BA (− 55%), while the largest bias for the FireCCI51 
product occurred with respect to the maximum reference BA layer 
(definite burn plus possible burn) with a significant overestimation of 
86%. While a lower product bias is almost always desirable, we caution 
that the relB error metric can be skewed through manipulation of the Oe 
and Ce scores. For example, adjusting a BA mapping algorithm to pro
duce more commission errors (i.e., false alarms), even on a purely 
random basis, will reduce the magnitude of a negative relative bias. 
Conversely, removing burned pixels, even on a purely random basis, can 
lower a high relative bias. Finally, as with the Oe and Ce values, the 
user’s accuracy (UABurn) — the probability that a mapped burn pixel 
represents a burn in the reference data — further highlights the inac
curacies of both BA products in spring. 

3.4. Intercomparison between MCD64A1, FireCCI51, MCD14ML, and 
VNP14IMGML 

We undertook a temporal intercomparison of the two MODIS-based 
BA products with the MODIS (MCD14ML) and VIIRS (VNP14IMGML) AF 
products to understand the temporal patterns and bias in relation to the 
known dates recorded in the AF observations. In particular we sought to 
determine if the FireCCI51 product also confuses the harvest signal 
which is a known problem within the MCD64A1 product (Giglio et al., 

Fig. 5. Spring (Region A and B) daily MODIS-based burned area (km2) and MODIS (MCD14ML) and VIIRS (VNP14IMGML) active fire counts over each mapping 
period (see Fig. 1). 
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2018; Zhang et al., 2018). The analysis was split into three separate 
groups: spring early peak (regions A and B; Fig. 5), summer early peak 
(regions C, E, F, and G; Fig. 6), and summer late peak (region D; Fig. 7). 

The harvest confusion in the MCD64A1 product (Fig. 6) is clearly 
seen at the start of the summer burn season with approximately two 
weeks of recorded BA (dark blue bars) before the start of the AF ob
servations. Although there are a few instances of recorded BA early in 
the summer timeseries from the FireCCI51 product, the harvest signal 

does not seem to impact this product as it does the MCD64A1 product. A 
similar pattern was also seen in the spring (Fig. 5), however, the 
explanation for why the peak of BA occurs before the AF peak is not fully 
known. A potential explanation for this Ce is related to confusion with 
snowmelt in these dark soil regions (Roy et al., 2005). 

Fig. 6. Summer beginning (Region C, E, F, and G) daily MODIS-based burned area (km2) and MODIS (MCD14ML) and VIIRS (VNP14IMGML) active fire counts over 
each mapping period (see Fig. 1). 
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4. Discussion 

Despite the densely-packed, large cropped fields and the full-field 
burns, both BA products suffered from high Oe and Ce values further 
supporting the findings found in previous cropland burning studies (e.g., 
Hall et al., 2016; Lasko et al., 2017). These BA mapping inaccuracies 
within our seven regions have a number of potential causes including 
harvest and snow-melt confusion. Some studies have also found per
formance differences between these two BA products within cropland 
areas to be related to the underlying land cover products used within 
each algorithm: MCD64A1 uses the MODIS MCD12Q1 land cover 
product (Friedl et al., 2010) while FireCCI51 uses the CCI-Land Cover 
Phase 2 product (Bontempset al., 2015). Specifically, each algorithm 
applies different rule sets for burning within cropland, therefore these 
will be subject to any errors within the underlying land cover products 
(Giglio et al., 2018). For example, Campagnolo et al. (2019) found high 
MCD64A1 OEe values within the Russian cropland which were likely 
attributed to the fragmented cropland map within the MCD12Q1 
product. Although in our seven mapped regions, we did not find any 
noticeable differences or cropland fragmentation within the underlying 
land cover products. 

While the MCD64A1 and FireCCI51 burned area products have been 
extensively validated for wildfires and larger prescribed burns, our 
analysis is a first step toward introducing a comparable level of rigor for 
the more difficult case of cropland field burning. The intensely labor- 
intensive effort required to manually produce our BA reference maps 
necessarily limited this first assessment to CEOS validation Stage 1, 
whereby product accuracy has been “estimated using a small number of 
measurements obtained from selected locations and time periods” 
(http://lpvs.gsfc.nasa.gov/). As part of a recent CCI-sponsored effort, 
independent BA reference data produced under the CEOS protocol were 
compiled into the Burned Area Reference Database (Franquesa et al., 
2020) to facilitate the development and validation of new BA products. 
Although the resulting compendium is extremely useful for validating 
BA maps of wildfires and many prescribed burns, cropland fire valida
tion requires a different sampling strategy. Prior to this study, cropland- 
fire training and validation samples have almost universally been 
compiled through sporadic field-based samples (often taken along the 
road) or via surveys (e.g., Singh et al., 2021). Neither approach is 
entirely suitable for comprehensive accuracy assessments that include 
cropland. In Ukraine and Russia, for example, open-burning is illegal, 
and survey data are therefore often unreliable and biased toward 
farmers who do not burn their fields (Hall et al., 2016; SovEcon, 2013). 
Instead, comprehensive BA reference data produced specifically for 
cropland are needed to help algorithm developers improve their prod
ucts within this land cover class. For example, these validation results (i. 
e. harvest and possible snowmelt confusion, tile-boundary seams, etc.) 

will be used to help guide the upcoming MCD64A1 Collection 7 burned 
area product improvements within cropland. 

Over the past several years, new methods to improve the represen
tation of small fires in global or regional emission inventories using 
MODIS or VIIRS AF data have been developed (e.g., Randerson et al., 
2012; Singh et al., 2020; Shi et al., 2020; Yin et al., 2021). These 
methods attempt to exploit the fact that AF products can generally detect 
fires that are several orders of magnitude smaller than the sensor foot
print (Giglio et al., 2003). Compared to other land cover types, cropland 
regions contain small, fragmented fires making AF data an attractive 
alternative for crop emission analysis (e.g., Hall et al., 2021; Liu et al., 
2020b). The more accurate timing of AF observations can also provide 
additional constraints on commission errors, which for the MCD64A1 
product can arise from confusion with the harvest signal. With the 
launch of new moderate-resolution (~20-m) sensors, there has been a 
move toward capturing small burns using a combination of Landsat and 
Sentinel imagery (e.g., Roteta et al., 2019; Roy et al., 2019). Despite the 
finer spatial resolution of these sensors, the ~3- to 5-day gap in overpass 
time (without taking into account cloud cover) will cause relatively high 
errors, especially in areas where farmers plow soon after burning, or if 
the spectral thresholds are not designed to avoid the harvest-signal 
confusion (Li & Roy, 2017; van Dijk et al., 2021). 

5. Conclusion 

We assessed the accuracy of two MODIS global BA data sets, NASA’s 
500-m MCD64A1 burned area product and the ESA’s CCI 250-m Fire
CCI51 burned area product, in cropland (primarily wheat and maize) 
using a representative sample of agricultural sites in Ukraine during 
2016 and 2017. BA reference maps were generated through exhaustive 
visual analysis of 3-m Planet, 20-m Sentinel-2, and 30-m Landsat-8 
imagery in conjunction with 375-m VIIRS active fire observations in 
consultation with a local agricultural expert. Initial visual analysis of the 
MODIS-based BA products found large swaths of tiling artifacts in the 
unmapped class of the FireCCI51 product, however, this issue did not 
impact our seven reference areas. 

We found that despite the large field sizes and more intensive 
cropland fires in Ukraine, both products suffer from very high errors of 
omission: MCD64A1 (71–76%) and FireCCI51 (63–99%). In all seven 
reference areas, the finer spatial resolution of the 250-m FireCCI51 
product seemed to offer little or no advantage for mapping these small 
fires over the 500-m MCD64A1 product – a finding that has been found 
in several other studies (e.g., Fornacca et al., 2017; Vetrita et al., 2021). 
In addition, we undertook a temporal intercomparison of the MCD64A1 
and FireCCI51 BA products with 1-km MODIS and 375-m VIIRS active 
fire products to understand the temporal patterns and bias in relation to 
the known dates recorded in the active fire observations. Here we 

Fig. 7. Summer end (Region D) daily MODIS-based burned area (km2) and MODIS (MCD14ML) and VIIRS (VNP14IMGML) active fire counts over the mapping 
period (see Fig. 1). 
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confirmed the harvest confusion in the MCD64A1 product at the start of 
the summer, predominately wheat, burning season. 

Given the coarse-resolution (≥250 m) of the two global BA products, 
Ukraine was an optimal location to conduct this cropland-focused BA 
validation. The large field sizes and intense fires (primarily due to high 
yields) compared to other crop-producing countries (e.g., India) pro
vided an opportunity to validate and understand these products for what 
is in many respects a “best-case” scenario. The ability to map cropland 
BA using coarse-resolution sensors and methods based on spectral 
reflectance will always be compromised due to the short-lived burn 
signatures between the time of burning and the subsequent plowing 
and/or seeding. The high omission and commission errors we found for 
both products within a region having relatively advantageous charac
teristics for cropland BA mapping (e.g., large fields) demonstrates that 
considerable caution is required when using MODIS-based BA products 
in cropland areas, especially those in which the fields are typically 
smaller (e.g., South-East Asia). Since these BA products provide a pri
mary input into fire emission databases and atmospheric transport 
models, the large cropland BA omission errors will have detrimental 
downstream impacts on the emission databases and subsequent scien
tific and policy-related findings. 
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