
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Using NASA Earth observations and Google Earth Engine to map winter
cover crop conservation performance in the Chesapeake Bay watershed
Alison Thiemea,b, Sunita Yadava,c, Perry C. Oddoa,d, John M. Fitza,b, Sean McCartneya,e,
LeeAnn Kingf, Jason Kepplerg, Gregory W. McCartyf, W. Dean Hivelyh,⁎

aNASA DEVELOP National Program, MS 307, Hampton, VA 23681, United States
bUniversity of Maryland, Department of Geographical Sciences, 2181 Samuel J. LeFrak Hall, 7251 Preinkert Drive, College Park, MD 20742, United States
cU.S. Department of Agriculture, Foreign Agricultural Service, 1400 Independence Avenue S.W., Washington, D.C. 20250, United States
dUniversities Space Research Association (USRA), 7178 Columbia Gateway Drive, Columbia, MD 21046, United States
e Science Systems & Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, MD 20706, United States
fU.S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville,
MD 20705, United States
gMaryland Department of Agriculture, 50 Harry S. Truman Parkway, Annapolis, MD 21401, United States
hU.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Rm 104 Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705, United States

A R T I C L E I N F O

Keywords:
Google Earth Engine
Remote sensing
Cover crop
Conservation
Chesapeake Bay
Biomass
Ground cover
Adaptive management
BMP
Vegetation index

A B S T R A C T

Winter cover crops such as barley, rye, and wheat help to improve soil structure by increasing porosity, aggregate
stability, and organic matter, while reducing the loss of agricultural nutrients and sediments into waterways. The
environmental performance of cover crops is affected by choice of species, planting date, planting method, nutrient
inputs, temperature, and precipitation. The Maryland Department of Agriculture (MDA) oversees an agricultural cost-
share program that provides farmers with funding to cover costs associated with planting winter cover crops, and the
U.S. Geological Survey (USGS) and the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) have
partnered with the MDA to develop satellite remote sensing techniques for measuring cover crop performance. The
MDA has developed the capacity to digitize field boundaries for all fields enrolled in their cover crop programs
(>26,000 fields per year) to support a remote sensing performance analysis at a statewide scal,e and has requested
assistance with the associated imagery processing from the National Aeronautics and Space Administration (NASA).
Using the Google Earth Engine (GEE) cloud computing platform, scripts were developed to process Landsat 5/7/8 and
Harmonized Sentinel-2 imagery to measure winter cover crop performance. We calibrated cover crop performance
models using linear regression between satellite vegetation indices and USGS / USDA-ARS field sampling data collected
on Maryland farms between 2006 and 2012 (1298 samples). Satellite-derived Normalized Difference Vegetation Index
(NDVI) values showed significant correlation with the natural logarithm of cover crop biomass (p≤0.01, R2 = 0.56)
and with observed percent vegetative ground cover (p ≤0.01, R2 = 0.68). The GEE scripts were used to composite
seasonal maximumNDVI values for each enrolled cover crop field and calculate performance metrics for the winter and
spring seasons of three enrollment years (2014–15, 2015–16, and 2017–18) for four Maryland counties. Results from
winter 2017–18 demonstrate that rye and barley fields had higher biomass than wheat fields, and that early planting,
along with planting methods that increase seed-soil contact, increased performance. The processing capabilities of GEE
will support the MDA in scaling up remote sensing performance analysis statewide, providing information to evaluate
the environmental outcomes associated with various agronomic management strategies. The tool can be modified for
different seasonal cutoffs, utilize new sensors to capture phenology in winter and spring, and scale to larger regions for
use in adaptive management of winter cover crops planted for environmental benefit.
Project support: This project was supported by the USGS Land Change Science Program within the Land
Resources Mission Area, the USDA Choptank River Conservation Effects Assessment Project (CEAP), the USDA
Lower Chesapeake Bay Long Term Agricultural Research (LTAR) Project; the Maryland Department of
Agriculture; and the NASA DEVELOP National Program.
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1. Introduction

1.1. Background Information

The Chesapeake Bay is a diverse ecosystem supporting a wide
variety of flora and fauna (Preston and Shackelford, 2002; DeLuca
et al., 2004). It is the largest estuary in the United States, with tidal
waters covering an area of 11,000 km2 and a watershed of roughly
167,000 km2 extending over six states and the District of Columbia
(Fig. 1; Boesch et al., 2001). Migratory birds use the Bay as a stopover
point on the Atlantic Flyway, and the fisheries are some of the most
productive in the country (Mabey et al., 2005; Chesapeake Executive
Council, 1990). In addition, the Chesapeake Bay watershed is home to
large metropolitan areas with high population densities (Jantz et al.,
2004). The associated infrastructures, urban development, and the
surrounding agriculture have a large impact on the Chesapeake Bay
ecosystem, often leading to reduced habitat quality and eutrophication
of water bodies due to point and non-point source pollution from nu-
trients, sediment, and contaminants (Kemp et al., 2005; Talberth et al.,
2015). “Agriculture contributes more than half of the nitrogen (pri-
marily from animal manures, chemical fertilizers and crop fixation)
transported from the watershed to the Bay” (Brakebill et al., 2014) and
is linked to eutrophication and declines in macrofauna and blue crabs
(Kemp et al., 2005).

The Maryland Agricultural Water Quality Cost-Share (MACS)
Program, managed by the Maryland Department of Agriculture (MDA),
provides cost-share grants to farmers to help offset the costs associated
with the implementation of certain best management practices that
address water quality concerns on Maryland farms. The Maryland
Cover Crop Program (Maryland Department of Agriculture, 2019), es-
tablished in 1997 as a component of MACS, incentivizes farmers to

grow winter cover crops to reduce nutrient and sediment loss from
farmland (Chesapeake Bay Program, 2014; Meisinger et al., 1991). In
addition to these environmental benefits, planting cover crops during
winter months can increase soil health, reduce pesticide usage, and
increase yields for cash crops by reducing opportunistic weeds and in-
sect pathogens (Sharma et al., 2018). The MACS program offers a
variety of incentive payment rates depending on the cover crop species
and agronomic management techniques used (Maryland Department of
Agriculture (MDA), 2019). Cover crop performance can vary depending
on planting date, seeding method, previous summer crop, field pre-
paration, local and annual climate variability, and a variety of addi-
tional factors (Hively et al., 2009; Hively et al., 2020; Lee et al., 2016).
Performance is evaluated using metrics such as aboveground biomass,
percent vegetative ground cover, and nutrient uptake (Hively et al.,
2009; Prabhakara et al., 2015). Higher biomass is associated with a
greater amount of ground cover, which reduces soil erosion by wind
and water and assists in building soil organic matter (Prabhakara et al.,
2015; Snapp et al., 2005). In addition, biomass is strongly associated
with nutrient uptake, with nitrogen concentrations in aboveground
biomass of winter cover crops typically ranging from 2% to 4% (Hively
et al., 2009). Therefore, accurate measurement of biomass in concert
with chlorophyll and nitrogen content is important to understand the
impacts of winter cover crops on nutrient loss from agricultural systems
(Prabhakara et al., 2015). Prior research has demonstrated that early
planting dates result in higher biomass accumulation, which can sig-
nificantly reduce soil nitrate concentrations. Soil nitrate content can be
reduced by>80% when cover crop growth exceeds 1000 kg/ha of
aboveground biomass (Hively et al., 2009; Hively et al., 2020).

The U.S. Department of Agriculture-Agricultural Research Service
(USDA–ARS) and the U.S. Geological Survey (USGS) have collaborated
with the MDA since 2006, developing remote sensing techniques to

Fig. 1. Landsat 8 Operational Land Imager (OLI) mosaic of the Chesapeake Bay watershed (inset) with focal counties (Queen Anne's, Somerset, Talbot, and
Washington, Maryland, USA) highlighted in purple (mosaic adapted from Taylor and Estrada, 2015). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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assess winter cover crop performance in Maryland (Hively et al., 2009;
Hunt et al., 2011; Hively et al., 2015; Prabhakara et al., 2015). The
scale of the studies includes use of proximal ground sensors
(Prabhakara et al., 2015), high-resolution aerial images (Hunt et al.,
2011), and medium-resolution multispectral satellite data (i.e., SPOT
[Satellite Pour l'Observation de la Terre] 4 and 5, and Landsat 5, 7, 8;
Hively et al., 2009; Hively et al., 2015). The amount of green vegetation
on cover cropped fields is measured using reflectance indices such as
the Normalized Difference Vegetation Index (NDVI), with calibration of
satellite imagery analysis provided by on-farm sampling of cover crop
performance. The MDA has developed the capacity to digitize field
boundaries for MACS cover crop cost-share program enrollment, and
those datasets, including related agronomic management information
for each field, are shared with the USDA-ARS / USGS research team to
support satellite performance analysis.

As the amount of enrolled cover crop acreage in the MACS has increased
each year due to high interest from farmers, so has the MDA's interest in
scalable technologies. Previous work has been successful in mapping cover
crop performance in several focus areas, including Talbot County,
Maryland, and in subwatersheds of the Choptank River, on the Eastern
Shore of the Bay (Hively et al., 2009; Hunt et al., 2011; Prabhakara et al.,
2015). However, such methods have not yet been broadly applied across
the state, because the scene-specific workflow has been time consuming and
difficult to scale. Furthermore, while use of commercial imagery could
provide a high-resolution evaluation of cover crop performance, the fre-
quency and cost of the amount of imagery needed would be prohibitive to
scale the analysis to the entire state using traditional data processing. These
barriers are beginning to be broken by research teams mapping cover crop
emergence in the Midwest (Environmental Working Group, 2018; Seifert
et al., 2018), but remote sensing has not yet been applied at large scale to a
geospatial database containing detailed knowledge of field-specific winter
cover crop agronomic management practices.

Freely available imagery such as Landsat and Sentinel-2 Earth ob-
servations from the National Aeronautics and Space Administration
(NASA) and the European Space Agency (ESA) can provide an oppor-
tunity to scale the cover crop performance measurements to the entire
State of Maryland. The processing demands of such an endeavor are
made possible by the cloud-computing platform Google Earth Engine
(GEE), which hosts both NASA and ESA surface reflectance satellite
imagery (Gorelick et al., 2017).

1.2. Objectives

We seek to demonstrate the ability of an operational cloud-based system
to scale MDA cover crop performance evaluation to the statewide level,
using geospatial enrollment data records that were recorded byMDA in four
Maryland counties (Talbot, Washington, Somerset, and Queen Anne's). We
develop GEE-based analyses to obtain and process clear imagery for mul-
tiple years in the winter and spring seasons, describing the relationship
between satellite-derived NDVI and on-farm field sampling data, and cal-
culate performance metrics (aboveground biomass, vegetative ground
cover) for each cover crop field, with the overall goal of characterizing the
effectiveness of various agronomic management practices and informing
adaptive management of conservation implementation. This collaborative
effort was realized through partnerships with the USGS, the USDA–ARS, the
MDA Office of Resource Conservation, the U.S. Environmental Protection
Agency (EPA) Chesapeake Bay Program, and the NASA DEVELOP National
Program.

2. Methodology

2.1. Data acquisition

2.1.1. Calibration data
Project partners at USGS and USDA–ARS provided in situ measure-

ments of cover crop biomass and percent ground cover from data

collected during on-farm field sampling in the winter
(December–January) and spring (March–April) of each year from 2006
through 2012. This dataset included 711 biomass samples (423 winter,
288 spring), and 587 groundcover samples (386 winter, 201 spring).
The samples were each associated with a global positioning system
(GPS) point identifying the sampling location within cropland fields
located on the Eastern Shore within Talbot and Queen Anne's Counties.
All fields were enrolled in the MACS cover crop cost-share program
(Maryland Department of Agriculture (MDA), 2018). Three sampling
locations per field were established in each field, at least 40 m apart,
and away from field edges and irregular features. At each sampling
location, the aboveground biomass (dry weight, kg/ha) was measured
by clipping vegetation from within a 0.5-m2 quadrat and drying 24 h at
60 °C, after which samples were ground and percent nitrogen content of
biomass was determined by dry combustion (LECO). Three shoulder-
height (1.5 m) nadir red-green-blue (RGB) photographic images were
acquired near each sampling location and were later processed using
SamplePoint software (classified using 144 randomly placed crosshair
locations per photo) to determine percent vegetative cover. These in situ
data were used to develop calibration equations to translate satellite
indices to estimated vegetative biomass and percent ground cover using
Landsat 5 and Landsat 7 imagery acquired within two weeks of each
sampling date, as described below in section 4.1. Calibration equations
and model applications were applied using an R script that is freely
available at https://github.com/NASA-DEVELOP/COVER. The USGS
and USDA–ARS additionally provided technical knowledge of cropping
systems in the study region.

2.1.2. Enrollment data
Our end users at MDA provided shapefiles identifying the bound-

aries of agricultural fields enrolled in the winter cover crop cost-share
program, along with tabular data describing the agronomic manage-
ment of each field. The agronomic data associated with each field
boundary polygon included cover crop species, planting date (with
early, standard, and late planting date categories defined as prior to
October 1, between October 1 and October 15, and between October 15
and November 6, respectively), planting method (drilled; broadcast
light disk; broadcast; aerial seeding), previous summer crop species
(corn, soybean, vegetables), and field area (Table 1; Supplementary
Data). Each of those agronomic management categories factors into a
variable cost-share payment rate schedule established by the MDA
(Maryland Department of Agriculture (MDA), 2018) and may poten-
tially be expected to produce variable performance of the resulting
cover crops. For example, planting methods that provide greater seed-
soil contact (drilling, disking) are expected to result in better environ-
mental performance (increased biomass and fractional groundcover, as
measured by NDVI) than aerial seeding and broadcasting (Chesapeake
Bay Program, 2016). The shapefiles included all enrolled cover cropped
fields within four counties (Queen Anne's, Somerset, Talbot, Wa-
shington) for the winters of 2014–15 (5228 fields), 2015–16 (7192
fields), and 2017–18 (5580 fields). For the winter of 2016–17, the
program used by MDA for geospatial data capture was in revision, and
no shapefiles were available for that year. At the time of analysis, en-
rollment data were only available for these four counties.

Table 1
Example of Maryland Agricultural Cost-Share Program winter cover crop
agronomic enrollment data.

Field ID Species Planting Method Planting Date Previous Crop

1 Wheat Conventional tillage 27-09-2017 Corn
2 Barley No-Till 01-10-2017 Soybeans
3 Rye Broadcast Light Disk 15-10-2017 Sorghum
4 Canola Broadcast Stalk-Chop 30-09-2017 Corn
5 Forage Radish Aerial 01-11-2017 Soybeans
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2.1.3. Imagery
Satellite imagery for this analysis was acquired from several sensors

between the years 2006 and 2018 and was processed for analysis in
GEE. Specific data included were Landsat 5 Thematic Mapper (TM; U.S.
Geological Survey Earth Resources Observation and Science Center,
2012), Landsat 7 Enhanced Thematic Mapper (ETM+; U.S. Geological
Survey Earth Resources Observation and Science Center, 2014a),
Landsat 8 Operational Land Imager (OLI; U.S. Geological Survey Earth
Resources Observation and Science Center, 2014b), and Harmonized
Sentinel-2 MultiSpectral Instrument (MSI) surface reflectance images
(Claverie et al., 2018). Coverage was obtained for Landsat 5 TM and
Landsat 7 ETM+ for 2006–2013, Landsat 8 OLI for 2013–2018, and
Sentinel-2 MSI for 2015–2018.

Imagery from NASA's Landsat Archive was obtained through GEE's
interactive Code Editor. All Landsat 5 TM and Landsat 7 ETM+ images
had been atmospherically corrected using the Landsat 4–7 Surface
Reflectance Product generated from Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) and Landsat 8 OLI images had
been atmospherically corrected using the Landsat Surface Reflectance
Code (USGS, 2018a; USGS, 2018b; Vermote et al., 2016). Landsat
images were masked using a CFMask algorithm to remove identified
clouds, cloud shadows, snow, and ice (Foga et al., 2017). Both the
surface reflectance and CFMask algorithms are encoded into the
Landsat 5, Landsat 7, and Landsat 8 Surface Reflectance (Tier 1 Level
2A) products available in GEE. This facilitated the rapid data acquisi-
tion and preprocessing of the large datasets that this project required.

Harmonized Sentinel-2 images acquired during the 2015–16 and
2017–18 cover crop seasons were downloaded from NASA (2019) and
uploaded into GEE (Sentinel-2 was launched in June 2015, so imagery
from that platform was not available for the 2014–15 cover crop
season). The Harmonized Sentinel-2 imagery data product is created by
resampling to 30 m and adjusting to match Landsat 8 spectral response
and pixel resolution (Claverie et al., 2018; Skakun et al., 2018; NASA,
2019). The Harmonized Sentinel-2 images were atmospherically cor-
rected using the Nadir Bidirectional Reflectance Distribution Function
(BRDF)-Adjusted Reflectance code and masked using a “mask of cloud,
cloud-shadow, snow and water mask [which is] a union of LaSRC mask
and the mask generated from the Fmask algorithm” (Skakun et al.,
2018).

The GEE scripts were written to access Landsat 5 TM, Landsat 7 ETM
+, Landsat 8 OLI, and Harmonized Sentinel-2 data and calculate the

seasonal maximum NDVI for each cover crop field boundary, as de-
scribed below. At the time of this project, Sentinel-2 surface reflectance
data were not available in GEE and the Harmonized Sentinel-2 product
therefore had to be uploaded to support the analysis; however, the
scripts were developed with the capacity to incorporate the Sentinel-2
MSI Level 2A product directly when it becomes available in GEE.

Each set of imagery was composited for winter (December
15–January 31) and for spring (March 1–April 15). For the cover crop
planting year prior to availability of Sentinel-2 data (2014–15) these
dates were expanded to December 15–February 15 and March 1–April
30 to compensate for the limited amount of cloud-free imagery avail-
able. Each winter and spring season contained between 55 and 82
Landsat 8 images acquired over the study area. The 2015–16 and
2017–18 seasons also included between 75 and 110 Harmonized
Sentinel-2 images.

Because the field sampling data were collected from 2006-2012, but
the enrollment shapefiles were digitized for 2015–2018, we used NDVI
calibration data derived from 2006-2012 Landsat 5 TM and Landsat 7
ETM+ to create calibration models, described below, that were sub-
sequently applied to 2015–2018 Landsat 8 OLI and Harmonized
Sentinel-2 imagery to predict cover crop performance. The Landsat 5
TM and Landsat 7 ETM+ sensors produce similar measurements for
NDVI (Vogelmann et al., 2001). However, the Landsat 8 OLI sensor
exhibits small differences in reflectance values relative to Landsat 5 TM
and Landsat 7 ETM+, due to differences in band width and spectral
response (Chastain et al., 2019; Li et al., 2013; Roy et al., 2016). In
particular, the near-infrared (NIR) band of the OLI was designed to be
considerably narrower than that of ETM+ to avoid a spectral water
absorption feature, resulting in slightly higher NIR reflectance and
slightly higher NDVI values (Chastain et al., 2019). Roy et al. (2016)
compared Landsat 7 ETM+ with Landsat 8 OLI reflectance values for
6317 overlapping image pairs collected one day apart and determined
that surface reflectance NDVI values were on average 0.0164 higher for
OLI than for ETM+, owing largely to differences in spectral response in
the NIR. This difference, while significant, is of considerably smaller
magnitude than the expected image-to-image differences arising from
the relative impact of the atmosphere on Landsat ETM+ NDVI (Roy
et al., 2014; Roy et al., 2016). Applying the 0.0164 average difference
in OLI surface reflectance NDVI to derived wintertime cover crop per-
formance calibration equations at NDVI = 0.50 would be expected to
result in an overestimation of approximately 2% vegetated ground

Fig. 2. Workflow of methodology including data acquisition, imagery processing, enrollment data processing, model calibration, and analysis.
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cover (36% versus 34%) and 33 kg/ha of aboveground biomass (361
versus 328 kg/ha). For greatest accuracy, future applications might
consider collecting on-farm calibration data contemporaneous with
Landsat 8 data acquisition or applying transformation equations de-
veloped in Roy et al. (2016) to convert OLI NDVI values into ETM+
equivalent values.

Similarly, the Sentinel-2 Multi Spectral Instrument (MSI) produces
slightly higher NDVI readings than the Landsat 8 OLI, due to differences
in bandwidth and spectral response (Zhang et al., 2018). To correct for
this, NASA supplies Harmonized Sentinel-2 imagery that has been ad-
justed to match OLI spatial and spectral characteristics (Claverie et al.,
2018) and produce similar values for NDVI. To test the compatibility of
the calibration with Harmonized Sentinel-2 data, we compared 1882
NDVI values from enrolled fields obtained from Harmonized Sentinel-2
and Landsat 8 OLI images acquired on the same day; this comparison
yielded an R2 value of 0.98 with a slope of 0.994 and intercept of 0.001,
indicating excellent alignment between the data sets.

2.2. Data processing

We used the image collections uploaded into GEE to apply the
CFmask algorithm to surface reflectance imagery (Foga et al., 2017).
After masking out clouds, cloud shadows, water and snow, NDVI was
calculated for each image:

= +NDVI (NIR Red)/(NIR Red) (1)

The NDVI (Rouse et al., 1974; Tucker, 1979) is a commonly used
index that correlates well with the leaf area index of green vegetation
(Gowda et al., 2015; Kang et al., 2016). Although additional vegetation
indices could be derived from the satellite imagery, Prabhakara et al.
(2015) compared nine indices for measurement of winter cover crop
biomass and percent vegetative ground cover on Maryland field sites
and determined that NDVI was the top performing index. Therefore, our
analysis relied on NDVI for performance calculations.

Field boundaries within each year's MDA cover crop enrollment data-
base were buffered inward by 15 m from the edge of each field to reduce
mixed pixel edge effects (Fig. 2). The outcome of the 15-m buffer was to
remove from analysis any pixels that intersected the true field boundary.
The resulting buffered field boundaries were overlaid onto each Landsat 8
OLI, Landsat 7 TM, and Landsat 5 TM and Harmonized Sentinel-2 image
falling within the corresponding winter and spring season, and the average
NDVI value within each field was recorded, along with the imagery date.
The field-specific average NDVI values were collected from every available
cloud masked image within the seasonal ranges and saved in a tabular data
file. From these spatially averaged NDVI values, temporal maximums
within each year and season were gathered, and the image date associated
with each field's maximum NDVI was recorded. The calculation of average
NDVI within each field smoothed out any in-field variation in performance,
and while in-field variation is relevant at the scale of precision agricultural
management, the averaging was deemed a reasonable solution for calcu-
lation of performance metrics at a landscape scale. The maximum NDVI
values were subsequently used for cover crop performance analysis, de-
scribed below. The team encoded the data acquisition, processing, and
analysis in a GEE script that is freely available at https://github.com/NASA-
DEVELOP/CCROP.

Any enrolled field boundaries without valid satellite data coverage
were deleted from the analysis. The occurrence of missing data due to
extensive cloudiness (pixels with cloud cover in all images incorporated
into a seasonal composite) was minimal, with less than 0.05% of
cropland pixels missing valid NDVI data for the season-years with both
Landsat and harmonized Sentinel (2015–16 and 2017–18), rising to
1.7% (winter) and 0.4% (spring) of cropland pixels missing valid NDVI
data for the year with only Landsat data available (2014–15). However,
when cloudiness was combined with snow cover, and fields with
NDVI< 0.0 were removed from analysis, this resulted in removal of
0.6% to 7.6% of enrolled fields for years without Sentinel imagery

availability, while all fields had valid data for years with harmonized
Sentinel and Landsat availability (Supplementary Data). The mapped
performance of any individual field does not affect MDA payment rates
or otherwise directly impact the farmer, and therefore the loss of in-
formation for fields that were removed or only partially covered by
valid imagery was not judged to be a major concern.

In comparison to the GEE scripts, traditional methods of data pro-
cessing would include downloading individual Landsat images, calcu-
lating NDVI, overlaying the vector file of enrollment data, extracting
average values for each field for 15–20 images, determining the max-
imum NDVI value for each field within the time sequence, and applying
calibration equations to calculate biomass and vegetative ground cover,
each of which would be an independent processing step. By using GEE,
the time required to accomplish this workflow was greatly shortened,
from several days of work using traditional methods to several hours
using the GEE workflow, despite the fact that GEE is rather slow at
handling polygon shapefiles.

For the in situ field dataset, sampling point locations identified with
sub-meter GPS (Trimble GeoXT) were overlaid on Landsat surface re-
flectance imagery for the temporally nearest single cloud-free image to
the field sampling date, and the associated NDVI values and imagery
dates were extracted into a tabular calibration database that included
field-sampled biomass and ground cover data (Supplementary Data).

2.3. Calibration development

For the in situ field sampling dataset, calibration regression equa-
tions were developed between the measured performance variables (i.e.
cover crop biomass and percent vegetative ground cover) and satellite-
derived NDVI. To account for the non-linear relationship between
biomass and leaf area index and observed saturation above
NDVI = 0.80 (Prabhakara et al., 2015), a natural logarithmic trans-
formation was applied to the biomass measurements, resulting in the
following biomass calibration model:

= +ln(biomass) NDVI (2)

where ε represents model error.
Note that when converting from predicted ln(biomass) to biomass, a

delogging adjustment factor should be applied to account for bias
during exponentiation (Miller, 1984):

= +biomass e(ln(biomass) MSE/2) (3)

where MSE is mean square error from analysis of variance (ANOVA)
results.

For vegetative ground cover, the relationship with NDVI is linear,
with both the fractional ground cover measurements and the vegetation
index saturating above 80% ground cover (Prabhakara et al., 2015),
and the following calibration model was used to determine fractional
vegetative ground cover:

= +%vegetative ground cover NDVI (4)

where ε represents model error.
The calibration dataset included n = 711 biomass samples (winter

samples n = 423, collected in December or January of 2006–2012;
springtime samples n = 288, collected in April or May of 2006–2012)
and n = 587 vegetative ground cover samples (winter samples
n = 386, collected in December or January of 2006–2012; springtime
samples n = 201, collected in April or May of 2006–2012), and sea-
sonal regression equations were derived for each performance factor.

To test for calibration versus validation of results, a data splitting
method, without replacement, was employed to randomly split the data
into 70% for calibration and 30% for validation, and this random
grouping was performed 10 separate times. The calibration:validation
datasets were then used to evaluate NDVI linear regression models for
ln(biomass) and for vegetative ground cover, in the winter and spring
seasons.
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3. Results & discussion

3.1. Biomass and percent ground cover models

Results (Table 2, Fig. 3a, c) showed a reasonably strong relationship
between NDVI and ln(biomass), with adjusted R2 of 0.562 and Root
Mean Square Error (RMSE) of 0.782 (equivalent to 2.19 kg/ha) for the
wintertime regression, and adjusted R2 of 0.403 and RMSE of 0.803
(equivalent to 2.23 kg/ha) for the springtime regression. Results
(Table 2, Fig. 3b, d) showed a stronger association between NDVI and
percent vegetative ground cover with adjusted R2 of 0.685 and RMSE of
13.05 for the wintertime regression, and adjusted R2 of 0.624 and
RMSE of 14.66 for the springtime regression.

Predictive accuracy was greater for percent ground cover
(R2 = 0.624 to 0.685) than for biomass (R2 = 0.403 to 0.562) likely
because ground cover has a linear, non-saturating relationship with
NDVI (as vegetation covers a greater portion of the soil, NDVI in-
creases), whereas biomass exhibits a non-linear saturating relationship
with NDVI (biomass is affected by the ratio of leaf to stem, thickness of
leaves, and leaf angle distribution, and a greater ‘depth’ of vegetation
covering the soil can greatly increase biomass without greatly affecting
reflectance from the field surface).

Several factors influenced the goodness of fit for the calibration
equations. The data were collected on a broad variety of farm fields,
with different soil types and under varying soil moisture conditions, on
different dates spanning six years. Additionally, the relationship be-
tween NDVI and cover crop biomass can be impacted by chlorosis,
dormancy, and frost damage that happens under cold weather condi-
tions (Prabhakara et al., 2015). Within any individual sampling-ima-
gery date pair, goodness of fit improved somewhat, ranging from 0.54
to 0.77 with best results obtained for 90 samples in the winter of
2008–2009. When comparing date-specific regressions, slopes asso-
ciated with ln(biomass) varied from 4.34 to 7.86 (average 5.57) and
intercepts varied from 0.99 to 4.46 (average 3.27). When the various
sampling dates are combined, the overall goodness of fit declines, likely
due to the impact of soil moisture variability among dates, along with
any atmospheric effects that are not accounted for in the conversion to
surface reflectance (Low et al., 2015; Tian et al., 2015; Yang and Lo,
2000). Ideally, remote sensing analysis of cover crop performance
would be calibrated by field data collection that occurred within each
particular season of analysis. However, such data were not collected in
2014–2018, and so analysis of cover crop performance relied upon
seasonal calibration equations derived from the 2006–2012 multi-year
field sampling dataset.

Model residuals did not display any structure for estimation of ln
(biomass) or for percent vegetative ground cover, indicating that the
assumptions required for linear regression were met and the regressions
were appropriate for the data (Supplemental Materials Fig. A). The
model fits were weaker at the lower data range for predicting biomass,
and weaker at the lower and upper data ranges for predicting percent
vegetative ground cover but were strong in the central range.

Some of the observed variance could be explained by including a
second variable (deltaGDD4) that measured the number of growing
degrees (base temperature of 4 °C) accumulated between the day of

field sample collection and the satellite acquisition date used to cal-
culate NDVI:

= + +ln(biomass) NDVI deltaGDD4 (5)

and

= + +vegetative ground cover NDVI deltaGDD4 (6)

where ε represents model error. Weather data used to calculate GDD4
were obtained from a weather station located at the University of
Maryland Wye Research Station (38°54″31′ N; 76°08″38′ W; University
of Maryland, 2018).

Including the deltaGDD4 variable improved model adj. R2 by only
0.03 and 0.08 for winter and spring ln(biomass) models, and by 0.01 for
the winter ground cover models, and the term was not statistically
significant for the spring ground cover model, leading to the conclusion
that temporal differences between sampling and imagery acquisition
were not of great consequence. Additionally, the deltaGDD4 variable
was not applicable to the seasonal cover crop enrollment prediction
models, for which only satellite NDVI values were available. Therefore,
the final seasonal calibration equations relied solely upon NDVI (Eqs.
(2) and (4)).

The statistical output for the ten 70:30 calibration:validation model
runs are provided in Supplemental Materials Table A. All of the cali-
bration and validation models were highly significant (p-value<2
× 10−16) with somewhat greater variance in spring compared to
winter (biomass model adj. R2 range: 0.54–0.59 for winter and
0.35–0.46 for spring; percent vegetative cover model Adj. R2 range:
0.64–0.69 for winter and 0.62–0.73 for spring). Likewise, RMSE values
generally displayed lower values for winter models in comparison to
spring models. Overall, the variation among each of the 10 cali-
bration:validation iterations was small (Supplementary Materials Table
A), and the equations resulting from the average of the 10 validation
runs were very similar to the calibration equations derived from the
complete dataset. For instance, for an NDVI of 0.40, the 10-run average
equation estimates a percent groundcover of 24.581%, while the
complete dataset equation estimates a percent groundcover of
24.618%, which is a negligible difference well within the margins of
rounding to relevant significant digits. Because the average 70:30 ca-
libration:validation results were negligibly different from the regression
equations derived using the entire dataset, the equations listed in
Table 2, derived using all data points, were used for prediction of cover
crop performance.

3.2. Predicting cover crop performance on enrolled fields

The maximum seasonal NDVI associated with each cover crop en-
rolled field boundary, derived from imagery processing in GEE, was
transformed using the equations detailed in Table 2 to calculate esti-
mated cover crop biomass and percent vegetative ground cover for each
field, for each of the three years of enrollment data. The resulting cover
crop performance metrics were then associated with the agronomic
management information for each field record. In this way, satellite-
derived estimates of cover crop performance could be used to evaluate
the comparative environmental effectiveness of various agronomic

Table 2
Calibration model results predicting natural log of biomass (ln(biomass)) and percent vegetative ground cover from satellite-derived Normalized Difference
Vegetation Index (NDVI) values, including adjusted R2 (adj. R2) and degrees of freedom (df).

Performance variable Season Model Adj. R2 RMSE df

Cover crop biomass Winter ln(biomass) = 3.2022 + 5.3740 * NDVI 0.562 0.782 422
Spring ln(biomass) = 4.7794 + 3.7453 * NDVI 0.403 0.803 288

Vegetative ground cover Winter % cover = −21.904 + 116.305 * NDVI 0.685 13.050 386
Spring % cover = −10.783 + 107.566 * NDVI 0.624 14.663 201
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cover crop management strategies at the landscape scale. An example
map of cover crop performance is provided in Figs. 4 and 5, showing
results for a collaborating farm that has released its cover crop enroll-
ment records for public use.

It should be noted that the increased temporal frequency of satellite
imagery acquisition provided by integration of Landsat 8 and
Harmonized Sentinel-2 imagery proved critical to robust characteriza-
tion of cover crop performance. When seasonal maximum NDVI

Fig. 3. Relationship between satellite-derived NDVI and cover crop performance variables (biomass, percent vegetative cover) using Landsat surface reflectance to
calculate sensor NDVI, and a dataset of 1298 cover crop field samples to measure performance: a) wintertime ln(biomass) versus NDVI; b) wintertime percent
vegetative ground cover versus NDVI; c) springtime ln(biomass) versus NDVI; and d) springtime percent vegetative ground cover versus NDVI.

Fig. 4. Example of conversion of satellite imagery to maximum averaged NDVI (collaborating farm, Talbot County, MD).
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composites were calculated separately for Landsat 8 and for
Harmonized Sentinel 2 (Fig. 6), the two imagery sources combined to
provide greater coverage of valid data (eliminating fields with
NDVI< 0.2 in one of the two imagery sources) and a cluster of points
became apparent in the springtime where high cirrus clouds had de-
creased Sentinel NDVI values below 0.2 without triggering the cloud
mask (Fig. 6b). By combining the two satellite data sources, the com-
posite maximum NDVI values provided a more accurate picture of cover
crop performance.

3.3. Summarizing seasonal cover crop performance

After the satellite reflectance indices were used to calculate winter
and springtime cover crop performance measures for each field enrolled
in the MACS Program, these field-specific results were segmented by
county, season, and year, and then summarized for each category of
agronomic management (Table 3 and Supplemental Materials Tables B
through M). Spatial autocorrelations in cover crop performance occur
in the natural landscape, due to localized differences in soils, cropping
systems, and climate. Additionally, inter-annual variability in winter
cover crop performance can be large, owing to differences in annual
weather conditions. For example, Hively et al., 2020 found that the
warmth of the winter season had a greater impact on wintertime
greenness on the Eastern Shore of Maryland than did the acreage of
cover crop implementation. However, within a county, within a parti-
cular season, within a particular year, the effects of spatial and

temporal autocorrelation are expected to be limited. The use of counties
as the spatial unit of analysis helps to compensate for spatial auto-
correlation, and the segmentation of analysis into winter and spring
seasons of each individual year assists to compensate for temporal au-
tocorrelation.

An example of the performance output is given for Queen Anne's
County, Maryland, for the 2017-18 cover crop period, in Table 3.
Output tables for the remaining counties and years are included in
Supplemental Materials Tables B through M. Significant differences
among factor levels were computed for mean NDVI values using ana-
lysis of variance (ANOVA) followed by Tukey's Least Significant Dif-
ference, as indicated by letter codes in Table 3 where factor levels with
the same letter (within factor type) are not significantly different and
factor levels with different letters were found to be significantly dif-
ferent with>95% confidence. Detailed statistical results supporting
the development of the letter codes are provided in Supplemental Ma-
terials Table N.

Measured environmental performance of cover crops (biomass,
percent vegetative ground cover) varied based on planting date, spe-
cies, planting method, and previous crop (Table 3; Supplemental Ma-
terials Tables B through M). In general, crops planted early (prior to
October 1) and during the standard planting period (October 1-October
15) outperformed crops planted later in the fall (Table 3; Supplemental
Materials Tables B through M), likely due to greater availability of
warm weather suitable for growth (Hively et al., 2020). In the winter of
2017, late-planted cover crops provided only 45% of the biomass and

Fig. 5. Predicted cover crop performance on example cover cropped fields for a) winter biomass, b) spring biomass, c) winter ground cover, and d) spring ground
cover, for the winter (December 15, 2017–January 31, 2018) and spring (March 1, 2018–April 15, 2018) seasons. These site-specific cover crop cost-share enrollment
data have been released for public use by the collaborating farm.
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Fig. 6. NDVI values for enrolled cover crop fields derived from Landsat 8 versus Harmonized Sentinel-2 maximum NDVI composite imagery for a) winter (December
15, 2017–January 31, 2018), and b) spring (March 1, 2018–April 15, 2018).

Table 3
Agronomic performance of winter cover crops in Queen Anne's County, Maryland for 2017⎼18 during a) winter and b) spring seasons.

Agronomic Factor Enrolled Fields Average * Predicted Biomass Predicted Ground Cover

# ha NDVI (kg/ha) (%)

a) Wintertime (December 15, 2017 to January 31, 2018)
Species
Wheat 1336 32,448 0.48 a 607 34
Rye 318 7853 0.52 b 820 38
Barley 58 1363 0.52 b 912 38

Planting Date
Early (By September 30) 812 20,490 0.53 a 852 39
Standard (By October 15) 663 15,477 0.49 b 642 36
Late (After October 15) 529 12,811 0.42 c 384 27

Planting Method
Aerial 800 20,390 0.47 bc 519 33
Broadcast Light Tillage 239 4570 0.49 bc 750 35
Broadcast Stalk Chop 20 294 0.52 abc 736 39
Conventional Drill 86 1637 0.59 a 1381 46
No-till Drill 453 11,084 0.52 b 815 39

Previous Crop
Corn 1235 32,437 0.51 a 758 37
Soybean 687 14,186 0.45 b 462 31
Vegetable 41 1107 0.58 c 1262 46

All Fields 2004 48,778 0.49 659 35

b) Springtime (March 1, 2018 to April 15, 2018).
Species
Wheat 1336 32,448 0.45 a 993 37
Rye 318 7853 0.48 bc 1192 41
Barley 58 1363 0.45 ac 963 37

Planting Date
Early (By September 30) 812 20,490 0.44 a 1004 37
Standard (By October 15) 663 15,477 0.47 b 1130 40
Late (After October 15) 529 12,811 0.41 c 859 34

Planting Method
Aerial 800 20,390 0.42 c 861 34
Broadcast Light Tillage 239 4570 0.48 b 1185 41
Broadcast Stalk Chop 20 294 0.45 bc 955 38
Conventional Drill 86 1637 0.56 a 1707 50
No-till Drill 453 11,084 0.46 b 1068 39

Previous Crop
Corn 1235 32,437 0.45 a 1041 38
Soybean 687 14,186 0.43 b 943 36
Vegetable 41 1107 0.49 a 1145 42

All Fields 2004 48,778 0.45 1007 37

*Within each factor, groupings with different letters have significantly different mean NDVI values at p < .05 while groupings with identical letters are not different.

A. Thieme, et al. Remote Sensing of Environment 248 (2020) 111943

9



69% of the groundcover provided by early-planted cover crops
(Table 3a). Early-planted cover crops outperformed standard planting
dates in the wintertime, indicating increased performance in the critical
early winter leaching period, but standard-planted cover crops sur-
passed early-planted cover crops in the spring analysis (Table 3b), likely
due to increased susceptibility of the more mature early-planted crops
to wintertime frost damage. Although effect of planting date varied by
year and county, largely similar results were found for other years and
counties (Supplemental Materials Tables B through M). The effect of
planting method was also apparent, with the method that provided the
best soil preparation and seed-soil contact (“conventional drill”) out-
performing other planting methods, and with aerial and broadcast
seeding exhibiting reduced performance (Table 3). The conventional
drill planting method outperformed all others in 14 out of 16 county-
season-year combinations (Supplemental Materials Tables B through
M). In Queen Anne's County, for the 2017-18 cover crop period, rye and
barley outperformed wheat in the winter analysis, likely due to their
greater cold tolerance (Table 3a). However, wheat made up the ma-
jority (78%) of cover crop plantings despite its comparatively poor
winter performance. The species-related differences were less pro-
nounced in the springtime analysis, although rye outperformed the
other species (Table 3b). Finally, cover crops planted in fields that had
produced vegetables or corn in the previous season consistently out-
performed than those grown on soybean fields (Table 3; Supplemental
Materials Tables B through M), likely due to increased availability of
residual soil nitrate (Chesapeake Bay Program, 2016).

In the winter of 2017 wheat was the most frequently planted crop in
Queen Anne's County, but performance metrics indicate it was out-
performed by fields planted with rye and barley (Table 3). By further
examining the performance of cover crop species by planting date ca-
tegory, we see that late planted wheat was the second most common
practice (26% of all fields) but performed most poorly in terms of
predicted biomass and percent ground cover (Table 4). There is evi-
dently an opportunity to increase the effectiveness of the winter crop

program by shifting away from late-planted wheat toward early
planting dates and more cold-tolerant species such as rye and barley.

Tabular output for each county, season, and year of remote sensing
analysis was transferred to stakeholders at the MDA, for their use in
analyzing patterns of agronomic performance. This information can
inform potential adjustments to cost-share incentive rates to promote
the most environmentally impactful cover crop management practices.
The methodology established here can provide a basis for rapid, op-
erational performance calculations in each coming year, for all fields
enrolled in the MACS winter cover crop cost-share program throughout
Maryland (> 25,000 fields per year covering>300,000 ha of farm-
land).

3.4. Limitations

While this analysis dramatically improves upon the current cap-
abilities of the MDA to assess cover crop performance, it has some
notable limitations that could be improved through further investiga-
tion. The field calibration dataset used to derive the regression models
associating satellite reflectance indices with cover crop performance
variables was limited in spatial extent to counties on the Eastern Shore
of Maryland and may not accurately represent landscape conditions in
the western counties. Furthermore, there is a temporal separation be-
tween the date range of calibration data collection (2006–2013) and the
application of predictive models (2014–2019), creating a potential risk
of systematic error due to changes in agricultural management tech-
niques. Therefore, collection of additional field data is needed to de-
velop more precise calibration models for statewide analysis.

It should be noted that while it is quite effective at imagery pro-
cessing, GEE can be slow in its handling of polygons. The analysis of
statewide cover crop performance, including creation of composite
seasonal NDVI imagery and overlay with> 25,000 polygon field
boundaries, takes approximately 2 h, which is substantially less time
than would be required to complete the analysis through graphics user

Table 4
Agronomic performance of winter cover crops by species and planting date in Queen Anne's County, Maryland for a) winter and b) spring time periods of the 2017-18
cover crop season.

Species and Planting Date Enrolled Fields NDVI * Predicted Biomass Predicted Ground Cover

# ha (kg/ha) (%)

a) Wintertime (December 15, 2017 to January 31, 2018).
Wheat
Early (Before Oct 1) 397 10,031 0.53 b 796 40
Standard (Oct 1–15) 502 11,489 0.50 d 663 36
Late (Oct 15 - Nov 6) 425 10,598 0.42 c 374 27

Rye
Early (Before Oct 1) 124 3237 0.59 a 1236 47
Standard (Oct 1–15) 116 2883 0.48 cd 622 34
Late (Oct 15 - Nov 6) 79 1734 0.46 c 457 31

Barley
Early (Before Oct 1) 35 1035 0.57 ab 1255 45
Standard (Oct 1–15) 23 328 0.44 cd 390 29
Late (Oct 15 - Nov 6) 0 0 – – –

b) Springtime (March 1, 2018 to April 15, 2018).
Wheat
Early (By September 30) 397 10,031 0.45 a 994 38
Standard (By October 15) 502 11,489 0.48 ef 1153 41
Late (After October 15) 425 10,598 0.41 b 816 33

Rye
Early (By September 30) 124 3237 0.52 c 1371 45
Standard (By October 15) 116 2883 0.45 af 1037 37
Late (After October 15) 79 1734 0.47 ace 40

Barley
Early (By September 30) 35 1035 0.46 acde 1066 39
Standard (By October 15) 23 328 0.42 cf 807 34
Late (Oct 15 - Nov 6) 0 0 – a – –

*Within each factor, groupings with different letters have significantly different mean NDVI values at p < .05 while groupings with identical letters are not
significantly different.
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interface-based processing. Once the overall seasonal analysis is com-
plete, producing maps and summary statistics on a county-by-county
basis takes approximately 5 min per county to display results; therefore,
the user needs to be patient when operating the report creation inter-
face. Perhaps a more optimum computational framework would be to
use GEE to produce the seasonal composite imagery and initial seasonal
performance analysis for enrolled cover crop field boundaries, and then
to create county and watershed-specific performance tables and gra-
phical analysis using a statistical program such as R.

Within this study, NDVI was a useful metric for aboveground bio-
mass and percent vegetative ground cover. It would also be useful to
directly measure the chlorophyll and nitrogen content of winter cover
crops, which are more strongly correlated with indices that incorporate
the red edge reflectance bands (Lamb et al., 2002) that are available
from satellites such as Sentinel-2 MSI, an instrument that had not yet
launched when the current calibration dataset was collected. Future
investigations could benefit from collecting in-field measurements of
cover crop nitrogen and chlorophyll content, in addition to biomass and
percent ground cover, to calibrate a remotely sensed measurement of
winter cover crop nitrogen content.

4. Conclusions

The MDA's Cover Crop Program is a critical component of the sta-
tewide initiative to improve the health of the Chesapeake Bay. As the
number and acreage of enrolled fields continues to rise, it is increas-
ingly important to ensure that fields are compliant with program re-
quirements and to understand which management practices are most
effective. The use of cloud-based satellite processing techniques al-
lowed for the extraction of performance metrics associated with each
cover crop field in the MDA cost-share enrollment database for specific
seasonal time periods. The increased frequency of imagery acquisiton
provided by harmonized integration of Sentinel and Landsat was cri-
tical to providing good temporal coverage within the seasonal target
periods. The satellite-derived estimates of biomass and percent vege-
tative ground cover were used to characterize the effect of various
agronomic management practices on cover crop performance. The re-
sulting insights can inform how the choice of cover crop species,
planting date, planting method, and previous crop impact the en-
vironmental performance of a given field. By monitoring cover crop
performance in counties across Maryland, and working with stake-
holders to improve conservation implementation, the MDA is sup-
porting the overarching goal of reducing nutrient and sediment runoff
in the Chesapeake Bay watershed.

Automating the methodology using Google Earth Engine has al-
lowed partners at the MDA to dramatically reduce the time required to
complete the necessary imagery processing steps, requiring hours in-
stead of days to compile each season's cover crop performance data.
Wide scale adoption of this methodology beyond the four counties
discussed in this analysis could dramatically improve the efficiency
with which compliance is verified and performance is tracked. As such,
the scripts created for this project have been released to the project
partners, end-users, and to the public on GitHub following the NASA
DEVELOP software release protocol. The data processing workflow and
GEE scripts enable the MDA to evaluate the performance of enrolled
cover crops on an annual basis, and to assess and improve long-term
environmental impacts of winter cover crops throughout Maryland.

4.1. Future directions

Currently, the MDA visits 30% of all enrolled fields in the fall to
verify cover crop implementation, and 20% of enrolled farms in the
spring to verify cover crop termination compliance (Keppler, 2017).
Using remote sensing imagery to evaluate implementation for all fields
enrolled in the program would allow the MDA to assess winter cover
crop performance in both the winter and spring months, support

adaptive management of their cover crop incentive program, and po-
tentially replace required field visits with imagery-based verification of
management dates and practices.

Two subsequent NASA DEVELOP projects have streamlined and
automated the workflow developed here to create a simple and effec-
tive GEE user interface for use by the MDA (and other stakeholders).
This user interface compiles cover crop performance results and iden-
tifies fields with unusually low cover crop performance to target field
visits to identify the cause. Reasons for low cover crop performance can
include the factors characterized by the agronomic dataset (e.g.,
planting date, planting method, species, previous crop, and previous
crop manure application and irrigation status) as well as extraneous
factors including grazing by geese, low soil nitrogen, and unfavorable
weather. The combined output of the NASA DEVELOP projects will
complete the development and release of a package of GEE-based
software to fully support the MDA in incorporating near real-time sa-
tellite remote sensing into the winter cover crop cost-share program.
The resulting information documenting cover crop performance, com-
municated in a useful format, can aid in the understanding and im-
provement of agronomic methods used to manage cover crops. The
MDA plans to use the generated information to support adaptive
management of their cover crop incentive program and to identify
underperforming fields. By identifying underperforming fields and
measuring cover crop termination dates, the MDA will be able to check
for program adherence, identify reasons for the poor performance,
adapt cost share structures, and communicate the results to partici-
pating farmers to improve winter cover crop environmental perfor-
mance.

Sentinel-2 MultiSpectral Instrument Level-2A surface reflectance
products are currently being ingested by GEE. Once these data are
available, they can be incorporated into an operational cover crop re-
mote sensing process in place of the Harmonized Sentinel-2 product
used in this manuscript.
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Glossary

ANOVA: Analysis of Variance
BRDF: Bidirectional Reflectance Distribution Function
EPA: U.S. Environmental Protection Agency

ESA: European Space Agency
ETM: Enhanced Thematic Mapper Plus (Landsat 7)
GEE: Google Earth Engine
GDD4: Growing Degree Days
GPS: Global Positioning System
GSFC: Goddard Space Flight Center (NASA)
LEDAPS: Landsat Ecosystem Disturbance Adaptive Processing System
MACS: Maryland Agricultural Water Quality Cost-Share Program
MDA: Maryland Department of Agriculture
MSE: Mean Square Error
MSI: Multispectral Instrument (Sentinel-2)
NASA: National Aeronautics and Space Administration
NIR: Near-infrared
NDVI: Normalized Difference Vegetation Index
OLI: Operational Land Imager (Landsat 8)
RGB: Red-Green-Blue
RMSE: Root Mean Square Error
SPOT: Satellite Pour l'Observation de la Terre (“Satellite for observation of Earth”)
TM: Thematic Mapper (Landsat 5)
USDA–ARS: United States Department of Agriculture - Agricultural Research Service
USGS: U.S. Geological Survey
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