Simulating microbial denitrification with EPIC: Model description and evaluation

R. César Izaurraldea,b,*, William B. McGillc, Jimmy R. Williamsb, Curtis D. Jonesa, Robert P. Linkd, David H. Manowitzd, D. Elisabeth Schwabe, Xuesong Zhangd, G. Philip Robertsonf,g,h, Neville Millarf,g\n
a Department of Geographical Sciences, University of Maryland, 2181 LeFack Hall, College Park, MD 20742, USA
b Texas Agri-Life Research and Extension, Texas A&M University, 720 East Blacklands Road, Temple, TX 76502, USA
c Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
d Joint Global Change Research Institute, Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Ct., Suite 305, College Park, MD 20740, USA
e Department of Economic and Social Sciences, Institute of Sustainable Economic Development, University of Natural Resources and Applied Life Sciences, Gutenberghaus, Feistmantelstrasse 4, A-1180 Vienna, Austria
f Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
g Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
h W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA

\section*{A R T I C L E I N F O}

Article history:
Received 25 February 2017
Received in revised form 7 June 2017
Accepted 9 June 2017

Keywords:
Microbial respiration nitrous oxide
Gas transport equation
Fertilizer nitrogen
Michaelis-Menten kinetics
Environmental policy integrated climate

\section*{A B S T R A C T}

Microbial denitrification occurs in anaerobic soil microsites and aquatic environments leading to production of N\textsubscript{2}O and N\textsubscript{2} gases, which eventually escape to the atmosphere. Atmospheric concentrations of N\textsubscript{2}O have been on the rise since the beginning of the industrial revolution due to large-scale manipulations of the N cycle in managed ecosystems, especially the use of synthetic nitrogenous fertilizer. Here we document and test a microbial denitrification model identified as IMWJ and implemented as a submodel in the EPIC terrestrial ecosystem model. The IMWJ model is resolved on an hourly time step using the concept that C oxidation releases electrons that drive a demand for electron acceptors such as O\textsubscript{2} and oxides of N (NO\textsubscript{3}−, NO\textsubscript{2}−, and N\textsubscript{2}O). A spherical diffusion approach is used to describe O\textsubscript{2} transport to microbial surfaces while a cylindrical diffusion method is employed to depict O\textsubscript{2} transport to root surfaces. Oxygen uptake by microbes and roots is described with Michaelis-Menten kinetic equations. If insufficient O\textsubscript{2} is present to accept all electrons generated, the deficit for electron acceptors may be met by oxides of nitrogen, if available. The movement of O\textsubscript{2}, CO\textsubscript{2} and N\textsubscript{2}O through the soil profile is modeled using the gas transport equation solved on hourly or sub-hourly time steps. Bubbling equations also move N\textsubscript{2}O and N\textsubscript{2} through the liquid phase to the soil surface under highly anaerobic conditions. We used results from a 2-yr field experiment conducted in 2007 and 2008 at a field site in southwest Michigan to test the ability of EPIC, with the IMWJ option, to capture the non-linear response of N\textsubscript{2}O fluxes as a function of increasing rates of N application to maize (*Zea mays* L.). Nitrous oxide flux, soil inorganic N, and ancillary data from 2007 were used for EPIC calibration while 2008 data were used for independent model validation. Overall, EPIC reproduced well the timing and magnitude of N\textsubscript{2}O fluxes and NO\textsubscript{2} mass in surficial soil layers after N fertilization. Although similar in magnitude, daily and cumulative simulated N\textsubscript{2}O fluxes followed a linear trend instead of the observed exponential trend. Further model testing of EPIC + IMWJ, alone or in ensembles with other models, using data from comprehensive experiments will be essential to discover areas of model improvement and increase the accuracy of N\textsubscript{2}O predictions under a wide range of environmental conditions.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Denitrification is the biological reduction of NO\textsubscript{3}− or NO\textsubscript{2}− to the gases N\textsubscript{2}O and N\textsubscript{2} (Saggar et al., 2013a,b; Robertson and Groffman, 2015). Although reduction of NO\textsubscript{3}− to NO\textsubscript{2}− has been reported to occur in oxic environments (Roco et al., 2016) denitrification is
typically a respiratory process in which NO$_3^-$ (or NO$_2^-$) replaces oxygen as terminal electron acceptor in facultative anaerobes. Such organisms are capable of extracting energy for their metabolism by coupling oxidation of reduced C or reduced S to reduction of oxides of N (e.g., NO$_3^-$, NO$_2^-$) yielding variable proportions of N$_2$O and N$_2$ (Conrad, 1996; Saggart et al., 2013a,b). Nitrous oxide is a potent greenhouse gas (Rodhe, 1990) that also depletes the protective layer of stratospheric O$_3$ (Cruzen, 1970). Atmospheric concentrations of N$_2$O have been rising since the beginning of the industrial revolution due to large-scale manipulations of the N cycle in managed ecosystems, especially due to use of synthetic nitrogenous fertilizer (Davidson, 2009; Khalil et al., 2002).

Current atmospheric N$_2$O emissions of 330 ppb are ~20% larger than those present in the pre-industrial era and during the last decades have been increasing at an annual rate of 0.73 ± 0.03 ppb yr$^{-1}$ (Ciais et al., 2014). Soils produce ~70% of the N$_2$O flux to the atmosphere mainly through microbial denitrification under anaerobic conditions and, to a lesser extent, through ammonia oxidation and nitrifier denitrification that occur during nitrification under partially anaerobic conditions (Conrad, 1996; Kool et al., 2011; Robertson and Tiedje, 1987; Zhu et al., 2013). Many biophysical factors control the production of N$_2$O in soils including those directly affected by management such as levels of NO$_3^-$, O$_2$ availability, soil water content, and soil temperature (Mosier et al., 1996).

There is a need—and significant potential—to reduce N$_2$O emissions from managed ecosystems (Khalil et al., 2002; Mosier et al., 1996; Robertson et al., 2000; Smith et al., 2008). Reduced N$_2$O emissions can be achieved through improved N management by combining organic and inorganic sources, optimizing rate, time, and placement of fertilizer application, and—in some cases—by using nitrification inhibitors (Smith et al., 2008). In order to evaluate N$_2$O emissions reductions from managed soils, the Intergovernmental Panel on Climate Change (IPCC) has developed a 3-tier approach that includes both direct and indirect emissions of N$_2$O (De Klein et al., 2006). Following this approach, direct N$_2$O emissions primarily arise from application of synthetic N fertilizers, organic N amendments, and management of organic soils. In managed soils, indirect N$_2$O emissions arise from N lost to downwind and downstream ecosystems as NH$_4^+$ and NO$_3^-$, redeposited as NH$_4^+$ and NO$_3^-$, and as N lost via leaching and runoff (Robertson et al., 2013).

The three tiers range in complexity (De Klein et al., 2006). In Tier 1, a fertilizer-based emission factor is used to estimate direct N$_2$O emissions from managed soils. In Tier 2, more detailed—country specific—emission factors are used to estimate N$_2$O emissions. Finally, the Tier 3 method is based on modeling or measurement approaches. Process-based field-scale N$_2$O simulation models are deemed useful in the Tier 3 approach because they can help identify the soil and environmental variables responsible for N$_2$O emissions and allow for the projection of these N$_2$O emissions to regional and country scales (Chen et al., 2008). Simulation of N$_2$O emissions, however, carry uncertainties associated with model structure, model parameterization, accuracy of input data, and resolution of spatial and temporal scales. For example, Nol et al. (2010) used Monte Carlo uncertainty propagation analysis to quantify uncertainties of modeled N$_2$O emissions caused by model input uncertainty at point and landscape scales. Nitrous oxide emissions at landscape scale averaged 20.5 ± 10.7 kg N$_2$O-N ha$^{-1}$ yr$^{-1}$, producing a relative uncertainty of 52%. At point scale, the relative error averaged 78%, suggesting that upscaling decreases uncertainty. The results confirmed the influence of spatial scale on the uncertainty of modeled results.

Several terrestrial ecosystem models are available to estimate N$_2$O emissions from managed and unmanaged ecosystems at site, regional, and national scales. They vary in level of resolution, degree of connection to the C cycle and connection between the biological and physical components of the system being modeled (Chen et al., 2008). Three examples of such models include DNDC (Li et al., 1992, 1996), ecosys (Grant et al., 1993a, 1993b; Grant and Pattey, 1999), and DayCent (Del Grosso et al., 2000, 2006; Parton et al., 1996). Comparisons of N$_2$O dynamics (Frolking et al., 1998; Li et al., 2005) and simulation approaches (Chen et al., 2008) employed by N$_2$O models emphasize the importance of accurate simulation of soil water content and its appropriate linking with denitrification and N$_2$O flux.

Modeling soil water dynamics is a strength of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystem model (Williams et al., 1984). Developed originally to model the relationship between erosion and soil productivity, the EPIC model has evolved into a comprehensive and widely used terrestrial ecosystem model (Williams et al., 2008). Our objectives here are to: (a) document a process-based microbial denitrification submodel implemented in EPIC thus adding to two other empirically-based (EPIC-specific) options to simulate denitrification (Williams, 1990); and, (b) test the new microbial denitrification model for its ability to reproduce experimental data (Hoben et al., 2011) exhibiting a non-linear response of N$_2$O fluxes to incremental rates of N application.

The process-based microbial denitrification model documented and tested here—IMWJ—quantifies microbial denitrification in soils under O$_2$-limiting conditions. Daily C oxidation quantified in the C model of EPIC (Izaurralde et al., 2006) releases electrons, which are accepted by O$_2$ under aerobic conditions. Oxygen uptake by microbes and roots is described with Michaelis-Menten kinetic equations. If O$_2$ is insufficient then the deficit for electron acceptors may be met by oxides of N (NO$_3^-$, NO$_2^-$, and N$_2$O). When denitrification occurs, there is an adjustment of C decomposition based on the ratio of actual vs. potential electrons accepted by O$_2$ and oxides of N. The movement of O$_2$, CO$_2$, and N$_2$O through the soil profile is modeled using the gas transport equation solved with an adaptive variable time step.

2. Description of the denitrification submodel in EPIC

2.1. Conceptual framework and model overview

The version of EPIC containing the denitrification submodel described and tested herein is identified as EPIC1704. The denitrification model presented here is identified as the IMWJ (Izaurralde, McGill, Williams, and Jones) denitrification option in EPIC. The connection between main IMWJ subroutines and relevant EPIC subroutines is shown in Appendix 6.1. Microbial decomposition of soil organic matter and respiration by plant roots results in oxidation of C (Fig. 1). Such oxidation produces electrons, typically carried within the cell as NADH + H$^+$, for which there must be an acceptor to allow decomposition or respiration to produce CO$_2$. Normally O$_2$ is the acceptor but in cases of O$_2$ deficiency electrons are transferred to N in NO$_3^-$ to yield NO$_2^-$ and thence N$_2$O and N$_2$ through denitrification as shown in the following equations:

\[\text{CH}_3\text{O}_2 + 5\text{HOH} \rightarrow 5\text{CO}_2 + 20\text{H}^+ + 20\text{e}^- \]
\[\text{NO}_3^- + 8\text{H}^+ + 8\text{e}^- \rightarrow 4\text{NO}_2^- + 4\text{HOH} \]
\[\text{NO}_2^- + 8\text{H}^+ + 8\text{e}^- \rightarrow 2\text{N}_2\text{O} + 6\text{HOH} \]
\[2\text{N}_2\text{O} + 4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{N}_2 + 2\text{HOH} \]

Overall: $5\text{CH}_3\text{O}_2 + 4\text{NO}_3^- + 4\text{H}^+ \rightarrow 5\text{CO}_2 + 2\text{N}_2 + 7\text{HOH} + \text{energy}$

The potential supply of electrons is calculated based on moisture content and temperature coupled with the nature and supply
of available substrates (Izaurralde et al., 2006). Electrons are first passed to O₂, based on O₂ concentration at the surface of both soil microorganisms and plant roots to form CO₂. Michaelis-Menten uptake kinetic equations are used to evaluate electron transfer to O₂.

If the potential supply of electrons exceeds those accepted by O₂, and if oxides of N (NO₂⁻, NO₃⁻ or N₂O) are present then electrons are passed to oxides of N (to emulate denitrification). Uptake of electrons by organisms reducing oxides of N is quantified via Michaelis-Menten kinetics (Grant and Pattey, 1999). Complete reduction of 1 mol of NO₃⁻ consumes 5 mol of electrons, compared to 3 mol of electrons for 1 mol of NO₂⁻ and 1 mol of electrons per mole of N₂O. Accordingly, the concentrations of each of the oxides of N are weighted to account for the variation in numbers of moles of electrons that each species accepts. The energy gain from reducing NO₃⁻ exceeds that from reducing NO₂⁻, which exceeds that from reducing N₂O. Consequently, the Michaelis-Menten expression contains terms for competitive inhibition such that NO₃⁻ inhibits reduction of NO₂⁻, and both inhibit reduction of N₂O.

A feedback mechanism based on electron acceptors controls decomposition. If potential supply of electrons is matched by the total accepted by O₂ plus oxides of N, then, decomposition equals potential decomposition, variables are updated and calculations start again for the next day. If, however, potential supply of electrons exceeds those accepted by O₂ plus oxides of N, then actual decomposition is reduced sufficiently such that total electron supply equals total electrons accepted by O₂ plus oxides of N.

The simultaneous diffusion of four gases (O₂, CO₂, N₂O, and N₂) is modeled using the gas transport equation (Šimůnek and Suarez, 1993). Within each day, each gas is transferred within the gas phase of the soil profile and between the soil surface and the atmosphere above. The profile is divided into computational layers of equal thickness. Properties of the soil profile layers are interpolated among the computational layers. Gas diffusion within the gaseous-phase of the soil profile is calculated using the Crank-Nicolson procedure (Crank and Nicolson, 1996) as default although the implicit and explicit procedures are included as options. Like the implicit and explicit methods, the Crank-Nicolson procedure is a finite difference method for solving numerically the heat and other partial differential equations. Gas diffusivity in soil is modified from air diffusivity to account for tortuosity and water-filled pore space according the Millington-Quirk approach (Millington and Quirk, 1961). The layer beneath the soil profile is considered a zero-flux boundary, while the atmospheric gas concentrations above the soil profile are fixed at atmospheric levels. Each gas is redistributed hourly between gas and liquid phases using Henry's Law. Flux of each gas across the soil-atmosphere plane is calculated from the surface boundary term of the diffusion equation at each diffusion time step and is accumulated into daily fluxes. Gaseous flow through bubbling allows movement of dissolved gases through the liquid phase to the soil surface when aggregate partial pressures exceed atmospheric pressure, which typically only occurs under highly anaerobic conditions.

2.2. Integrating denitrification with soil C dynamics and gas exchange (See Appendix 6.2. for definition of names, values, and units of selected variables and parameters used in this section)

In EPIC-IMWJ, electron supply is generated via microbial and root respiration. Oxidation of C by microbial respiration (RSPC, mol e⁻ m⁻² h⁻¹) liberates electrons (e⁻), and the flux of e⁻ (ESM; mol e⁻ m⁻² h⁻¹) drives the demand for e⁻ acceptors.

\[
ESM = RSPC \times \frac{0.1}{72}
\]

Dimensions: RSPC [kC molC \cdot kg⁻¹ \cdot 10⁻⁶ha⁻¹ \cdot 1d] 1 molC = 4molC = RSPC [0.1 \ mol e⁻ m⁻² h⁻¹]

Like microbial respiration, root respiration oxidizes C for growth and maintenance, thereby generating e⁻ (ESR; mol e⁻ m⁻² h⁻¹). Growth respiration (RRG) is calculated as a function (RRF; dimen-
The diffusion coefficient of O₂ in soil water (DₐO₂) is adjusted for temperature.

\[D_{\text{O}_2} = D_{\text{a}_0} O_2 \left(\frac{T + 273.15}{20 + 273.15} \right)^6 \]

(10)

Where \(D_{\text{a}_0} O_2 \) is base diffusion coefficient (7.2 × 10⁻⁶ m² h⁻¹) at 20 °C (p. 6–194, (Lide, 2001)).

Two options are available in EPIC to estimate water film thickness (DW). The first method, called water-potential method, is based on relationships among volumetric water content (VWC), total porosity (TPOR) and water potential (WP). The second, called the accessible-water method, is based on accessible pore volume and accessible water volume based on diameters of pores relative to microbes. Details of these two methods are given in SI Appendix 6.3. Calculation of DW.

Using the water potential method, which is simpler:

\[dw = dm + 8x10^{-6} \cdot WP - 0.945703126 \]

(11)

Where \(dw = \) radius of water film plus microbe (m); \(dm = \) radius of microbe as in (7); and, \(WP = \) water potential (bars).

2.3. Active/passive biomass

In this paper, we use “active” instead of “total” microbial biomass in the calculation of O₂ transport to microbial surfaces (see Eq. (7) above). To implement the modification, we follow the recent approach of Wang et al. (2014) to represent dormant and active microbial dynamics, which is based on microbial physiologically states as well as parameters specifying maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates.

2.4. Oxygen transport and uptake

Transport of O₂ to roots through the soil solution on an hourly basis is a product of conductance and change in [O₂]. Conductance to roots (Kₑ) within a soil layer can be calculated as:

\[Kₑ = \frac{2 \pi D_{\text{O}_2} \cdot m^2 \cdot (r_2 - r_1)}{ln \left(\frac{r_2}{r_1} \right)} \]

(12)

The value 2 x 10⁵ m² root/kg root is an average for winter wheat roots obtained from (Wild, 1988) (p. 125, Table 4.3). Other representative values are: 10⁵ m² kg⁻¹ for maize and soybean and 2.5 x 10⁵ m² kg⁻¹ for sorghum.

Electrons accepted by O₂ during root respiration (mol e⁻ m⁻² h⁻¹) is the product of Kₑ and the difference in O₂ concentrations in the soil solution and at the root surface:

\[EA_{2O_R} = Kₑ \left([O₂]_s - [O₂]_r \right) \]

(13)

Which expands to:

\[EA_{2O_R} = \frac{125.66 \cdot D_{\text{O}_2} \cdot RWT \cdot m}{ln \left(\frac{r_2}{r_1} \right)} \left([O₂]_s - [O₂]_r \right) \frac{4}{32} \]

(14)

Where \(EA_{2O_R} \) = Electrons accepted by O₂ during root respiration (mol e⁻ m⁻² h⁻¹); RWT is as defined for (3); \(D_{\text{O}_2} \) is as defined for (5), (6); \(O_2S \) is as defined for (7); \(O_2r \) = O₂ concentration at the surface of roots (g O₂ m⁻³ soil water); \(r_1 \) = radius of plant roots (set at 0.001 m); and, \(r_2 \) = radius of soil water film thickness plus plant roots (m).

Dimensions: \(EA_{2O_R} = \frac{m}{s} \cdot \frac{mol}{m^2} \cdot \frac{mol}{m^2} \cdot \frac{mol}{m^3} \cdot \frac{mol}{m} \)

Analogous to \(dw \), values for \(r_2 \) are calculated as:

\[r_2 = r_1 + 8x10^{-6} \cdot WP - 0.945703126 \]

(15)
Microbial uptake is modified from Grant and Pattee (1999)

$$EA_{O2m} = ES_M \cdot \frac{[O_{2m}]}{[O_{2m}] + K_{02}}$$ \hspace{1cm} (16)

Where EA_{O2m}, $[O_{2m}]$, and $[O_{2s}]$ are as defined for (7); ES_M as defined for (1); and K_{02} is half-saturation value for O$_2$ uptake (g O$_2$ m$^{-3}$ soil water).

Dimensions: EA_{O2m} = mole$^{-\text{m}^3}$/gm$^{-\text{h}}$ = mole$^{-\text{m}^3}$/m3.

Uptake of O$_2$ by microbes or roots requires O$_2$ to travel from the gas phase through the liquid phase to the uptake surface. Transport is inversely proportional and uptake directly proportional to [O$_2$] at the surface of microbes $[O_{2m}]$ or root $[O_{2s}]$. The challenge is to find the concentration at the surface of microbes or roots, which is a function of potential rate of uptake and rate of transport to the organism surface.

Since Eqs. (16) and (7) for EA_{O2m} are equivalent, they are equated, rearranged into a quadratic expression (see SI Appendix 6.4 Derivation of method to calculate concentration of O$_2$ at the surface of microbial cells) and solved for O_{2m}.

$$[O_{2m}] = \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot C}}{2A}$$ \hspace{1cm} (17)

The positive solution is used because A is negative. Where, $A = -K_f \cdot B = (K_f \cdot [O_{2s}] - K_f \cdot K_{02} \cdot ES_M)$; $C = K_f \cdot K_{02} \cdot [O_{2s}]$; and, $K_f = 4 \cdot \pi \cdot n \cdot MBC \cdot 10^{-3} \cdot D_{O2} (\text{dm} \cdot \text{day})^{-1}$.

The value of O_{2m} is then used to calculate the value of EA_{O2m}.

With microbes, uptake of O$_2$ by roots is calculated as:

$$EA_{O2R} = ES_R \cdot [O_{2R}] \left([O_{2R}] + K_{O2R}\right)$$ \hspace{1cm} (18)

Eqs. (13) and (18) are equivalent and are used to solve for $[O_{2s}]$ as in (19) using:

$$A = -K_f \cdot B = (K_f \cdot [O_{2s}] - K_f \cdot K_{O2R} \cdot ES_R)$$ \hspace{1cm} (19)

The value of O_{2R} from (19) is used in (18) to solve for EA_{O2R} (mole$^{-\text{m}^3}$/gm$^{-\text{h}}$). The sum of electrons accepted by O$_2$ during microbial and root respiration (EA_{O2SUM}) is then the sum of equations (16) and (18). The electrons not accepted by O$_2$, and hence available for denitrification, (ESD), is the difference between supply (Eqs. (1) (ESM)) plus (4) (ESR)) and accepted electrons. It is calculated as:

$$ESD = \text{FD} \cdot (ES_M + ES_R - EA_{O2SUM})$$ \hspace{1cm} (20)

The term FD (coded as PRMT97, Table 1) accounts for the fact that microbial growth rate under anaerobic conditions is slower than under aerobic conditions. Hence, ESD is the theoretical deficit.

2.5. Competition for electrons among oxides of N

Oxides of N compete for electrons and as modeled exhibit competitive inhibition behavior. Competition is simulated by calculating a competitive inhibition-weighting factor for each oxide, and summing them for all oxides. The dimensionless weighting factors are WN5 for NO$_3^-$ reduction; WN3 for NO$_2^-$ reduction and WN1 for N$_2$O reduction:

$$WN5 = 2 \cdot \frac{[NO_3^-]}{WN5 + [NO_3^-]}$$ \hspace{1cm} (21)

$$WN3 = 1 \cdot \frac{[NO_2^-]}{WN3 \left(1 + \frac{[NO_2^-]}{WN3}\right) + [NO_2^-]}$$ \hspace{1cm} (22)

$$WN1 = 1 \cdot \frac{[N_2O]}{WN1 \left(1 + \frac{[N_2O]}{WN1}\right) + [N_2O]}$$ \hspace{1cm} (23)

Ranges of values for WN5, WN3, and WN1 are provided in Table 1. All variables on the right side of the equations have units of g m$^{-3}$. The rates of electron acceptance during denitrification (mol e$^{-}$ m$^{-2}$ h$^{-1}$) are calculated as:

$$EAN5 = ESD \cdot \frac{WN5}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN5}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (24)

$$EAN3 = ESD \cdot \frac{WN3}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN3}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (25)

$$EAN1 = ESD \cdot \frac{WN1}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN1}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (26)

$$EAN1 = ESD \cdot \frac{WN1}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN1}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (27)

$$EAN1 = ESD \cdot \frac{WN1}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN1}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (28)

$$EAN1 = ESD \cdot \frac{WN1}{(WN5 + WN3 + WN1)} \cdot \frac{\text{WN1}}{\text{WN5} + \text{WN3} \cdot \frac{0.1}{14}} / dt$$ \hspace{1cm} (29)

Dimensions:

EAN5(5, 3, 1) = mol e$^{-}$ m$^{-2}$ h$^{-1}$; WNO3 = kg N ha$^{-1}$; dt = 1 h.

For NO$_3^-$: $EAN5 = WNO3 \cdot \frac{3 g N}{k g N \cdot h} \cdot \frac{2 \text{mol e}^-}{1 \text{kg N}} \cdot \frac{103 g N}{k g N} \cdot \frac{10.4 h}{m^2} = WNO3 \cdot \frac{3}{103} \cdot \frac{2 \text{mol e}^-}{g N} \cdot \frac{103 g N}{k g N} \cdot \frac{10.4 h}{m^2}$

Similarly, for NO$_2$: $EAN1 = WNO2 \cdot \frac{2 g N}{k g N \cdot h} \cdot \frac{2 \text{mol e}^-}{1 \text{kg N}} \cdot \frac{103 g N}{k g N} \cdot \frac{10.4 h}{m^2} = WNO2 \cdot \frac{2}{103} \cdot \frac{2 \text{mol e}^-}{g N} \cdot \frac{103 g N}{k g N} \cdot \frac{10.4 h}{m^2}$

Then, the total number of electrons accepted by O$_2$ and oxides of N during an hour and for a given layer is calculated as:

$$EA = EA + EA_{O2M} + EA_{O2R} + EAN5 + EAN3 + EAN1$$ \hspace{1cm} (30)

Once daily EA is calculated for a soil layer, a ratio between accepted and supplied electrons (EAR) is calculated and used to constrain decomposition. By definition, EAR ranges between 0 and 1. Finally, the model calculates the amount of O$_2$ consumed, computes the quantities of CO$_2$, N$_2$O and N$_2$ generated, and updates the mass remaining as NO$_3$, NO$_2$, and N$_2$O.

2.6. Urea hydrolysis, nitrification, and nitrifier denitrification

Urea hydrolysis from fertilizer urea is modeled in the subroutine UREAHYDROLYSIS following (Godwin and Jones, 1991). The
hydrolysis rate is calculated according to soil organic C, pH, soil temperature, and soil water.

Nitrification is modeled simultaneously with ammonia volatilization in the subroutine NITVOL by combining methods of Reddy et al. (1979) and Godwin et al. (1984), (Williams, 1990). Nitrification follows first-order kinetics and the nitrification rate is affected by soil temperature, water content, and pH. Recently, the nitrification equations were modified to model (a) pH effects on nitrite accumulation and (b) nitrifier denitrification.

We follow Li et al. (2000) to account for nitrifier denitrification (Wragge et al., 2001). Nitrous oxide generated during nitrifier denitrification is calculated as a fraction of nitrification rate (Table 1, PRMT98), as modified by temperature and water-filled porosity functions (Li et al., 2000).

Table 1

<table>
<thead>
<tr>
<th>EPIC file</th>
<th>Variable name</th>
<th>Option</th>
<th>Definition</th>
<th>Unit</th>
<th>Value (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPICCONT</td>
<td>IDN</td>
<td>3</td>
<td>IMWJ denitrification submodel (Pore-water thickness method 1)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>EPICCONT</td>
<td>IDN</td>
<td>4</td>
<td>IMWJ denitrification submodel (Pore-water thickness method 2)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IPRK</td>
<td>1</td>
<td></td>
<td>Slug-flow approach</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IPRK</td>
<td>2</td>
<td></td>
<td>Richard's flow approach</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DZ</td>
<td></td>
<td></td>
<td>Layer thickness for solution of gas transport equation</td>
<td>m</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>SITEFILE</td>
<td>DTG</td>
<td></td>
<td>Time interval for solution of gas transport equation</td>
<td>h</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>SOILFILE</td>
<td>CGO2</td>
<td></td>
<td>Initial value of O2 concentration in gas phase</td>
<td>g m⁻³</td>
<td>110–275</td>
</tr>
<tr>
<td>SOILFILE</td>
<td>CGCO2</td>
<td></td>
<td>Initial value of CO2 concentration in gas phase</td>
<td>g m⁻³</td>
<td>0.2–1.2</td>
</tr>
<tr>
<td>SOILFILE</td>
<td>CGNO2</td>
<td></td>
<td>Initial value of NO concentration in gas phase</td>
<td>g m⁻³</td>
<td>0.004–0.01</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT82</td>
<td></td>
<td>Microbial N:C ratio at which N immobilization is maximum</td>
<td>–</td>
<td>0.025–0.075</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT83</td>
<td></td>
<td>Microbial N:C ratio at which N immobilization ceases</td>
<td>–</td>
<td>0.2–0.04</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT84</td>
<td></td>
<td>Specific base rate for ammonification</td>
<td>d⁻¹</td>
<td>0.2–0.4</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT85</td>
<td></td>
<td>Microbial N:C ratio at which ammonification ceases</td>
<td>–</td>
<td>0.025–0.075</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT86</td>
<td></td>
<td>Microbial N:C ratio at which ammonification ceases</td>
<td>–</td>
<td>0.2–0.04</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT87</td>
<td></td>
<td>Maximum rate of nitrogen uptake during immobilization</td>
<td>g N g⁻¹ d⁻¹</td>
<td>0.2–0.5</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT88</td>
<td></td>
<td>Half saturation constant for ammonia immobilization</td>
<td>mg NL⁻¹</td>
<td>10.0–20.0</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT89</td>
<td></td>
<td>Half saturation constant for nitrite immobilization</td>
<td>mg NL⁻¹</td>
<td>5.0–15.0</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT90</td>
<td></td>
<td>Half saturation constant for nitrate immobilization</td>
<td>mg NL⁻¹</td>
<td>10–20</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT91</td>
<td></td>
<td>Microbial growth rate retardation under anaerobic conditions, F_Dfvalue = 0.19</td>
<td>–</td>
<td>0.0–1.0</td>
</tr>
<tr>
<td>PARM1704</td>
<td>PRMT92</td>
<td></td>
<td>Nitrifier denitrification coefficient; N_Dfaux = 0.0006</td>
<td>–</td>
<td>0.0–0.02</td>
</tr>
<tr>
<td>PARM1704</td>
<td>XKN5</td>
<td></td>
<td>Michaelis-Menten NO₃⁻ reduction constant</td>
<td>g m⁻³</td>
<td>100–500</td>
</tr>
<tr>
<td>PARM1704</td>
<td>XKN3</td>
<td></td>
<td>Michaelis-Menten NO₂⁻ reduction constant</td>
<td>g m⁻³</td>
<td>15–40</td>
</tr>
<tr>
<td>PARM1704</td>
<td>XKN1</td>
<td></td>
<td>Michaelis-Menten N₂O reduction constant</td>
<td>g m⁻³</td>
<td>0.01–2.5</td>
</tr>
<tr>
<td>PARM1704</td>
<td>CBVT</td>
<td></td>
<td>Cumulative proportion of the BioVolume of spherical and cylindrical organisms, CBVTfactual = 0.5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

2.7. Gas solubility, phase distribution, and gas transport in soils

Gas solubilities are calculated with formulas from Lide (Lide, 2001) (pages 8–86 to 89). For details see SI Appendix 6.5. Gas Transport). The dimensionless form of Henry’s Law Constant (K_H; or air-water partition coefficient) was used to calculate the distribution of these gases between soil air and soil water. K_H was evaluated using solubility data at a partial pressure of the gas (P_g) of one atmosphere as in SI Appendix 6.5. Gas Transport.

In EPIC-IMWJ mineralization and immobilization of C and N are simulated in a subprogram called NCNM following the CENTURY model (Izaurralde et al., 2006) with mineralization and immobilization rates varying with fluctuating C/N ratios of microbial biomass following the PHOENIX approach (McGill et al., 1981). Ammonification and N immobilization occur concurrently. All microbial biomass is considered in aggregate – bacterial and fungi are not treated separately. Upper N:C ratios of microbial biomass are set at which ammonification is a maximum and N immobilization ceases; lower N:C ratios of microbial biomass are set at which ammonification ceases and N immobilization is maximum. Ranges of thresholds for N immobilization are tabulated as PRMT 82 and PRMT 83, and for ammonification as PRMT 85 and PRMT 86 in Table 1. At the end of each day, EPIC calculates an amount of C respired (RSCP, kg ha⁻¹ d⁻¹) for each soil layer as controlled by water content and temperature but not [O₂]. To connect CO₂ production with O₂ demand, a new subprogram was developed in EPIC called GADSF3, which uses the one-dimensional gas transport equation to calculate the distribution of [O₂] (g m⁻³) at all depths during a 24 h period. Because diffusion in water is about four orders of magnitude slower than in air, diffusion in air is the only mechanism modeled here.

The gas transport equation for any of the three gases modeled (O₂, CO₂, and N₂O) was written as:

\[
\frac{\partial (aC_g)}{\partial t} = \frac{\partial^2 (D_g C_g)}{\partial z^2} + r_g
\]

Where, \(a = \) volumetric air content (m³ m⁻³); \(C_g = \) soil gas concentration (g m⁻³); \(r_g = \) sink (source) term (g m⁻³ h⁻¹); \(D_g = \) gas diffusion coefficient in soil (m² h⁻¹); \(t = \) time (h); and, \(z = \) depth (m).

The numerical solutions for the gas transport equation are taken from Press et al. (1993) with modifications to include the volumetric factor. Three solutions are available in the sub model GADSF3 (SI Appendix 6.5. Gas Transport). Users can select the version that most suits their situation. However, the explicit scheme should not be used without adding an explicit check to ensure that the stability criterion is satisfied (Press et al., 1993). We use the Crank-Nicolson solution. The numerical solutions were implemented using the Gaussian elimination procedure followed by back substitution of the tridiagonal matrix (Press et al., 1993; p. 33).

Although the implicit and Crank-Nicholson integration schemes are stable for time steps of any size, they are not guaranteed to be accurate for large time steps. For most of the calculation, an hourly diffusion time step gives acceptable results, but occasionally, particularly when gas concentrations are changing rapidly (e.g., due to high respiration rates), a one-hour time step is too large. To address this issue, we have introduced an adaptive variable time step into the diffusion solver.

The most obvious indicator of time steps that are too large is diffusive fluxes that are a significant fraction of (or even larger than) the total mass in a grid cell. Accordingly, our adaptive time step
adjusts the time step to limit the maximum fractional change in gas concentration ($\frac{\partial c}{\partial t}$) over all of the cells in the grid.

\[
\max \left(\frac{c_{j}^{n+1} - c_{j}^{n}}{\Delta t} \right) < \varepsilon c_{j}^{n}
\]

If at any point during the integration this condition is violated anywhere in the grid, then the concentrations are rolled back to the beginning of the hour, the time step size is halved, and the integration is restarted. This process continues with the time step being halved at each iteration until the end of an entire hour of integration without encountering a violation. These results are returned to the GASDF3 subroutine for use in the rest of the denitrification model.

Diffusion of a gas in soil is slower than in air because of impediments and tortuosity caused by water-filled pores and soil particles. In addition, diffusion of a dissolving gas is slowed by negligible diffusion rate of the gas contained in the liquid phase. Consequently, the diffusion coefficient of O$_2$ in soil (D_2) is calculated from the binary diffusion coefficient of O$_2$ in air (D_0) and a tortuosity factor ξ_g and corrected for dissolution in soil water using K_{H} (see SI Appendix 6.5. Gas Transport).

2.8. Gas bubbling

We follow Grant and Pattey (1999) to model the bubbling of N$_2$O from soil to the atmosphere under anaerobic conditions. Aquous gas concentrations are limited per the ideal gas law such that dissolved gases are released if the aggregate partial pressures exceed atmospheric pressure. When ebullition occurs, gases are released from solution proportional to the relative concentrations and transferred to the soil surface. Under frozen conditions gases are transferred to the most surficial unfrozen layer while under saturated conditions gases are transported directly to the atmosphere.

3. Methods and data

3.1. Preparing EPIC1704 to run with the IMWJ denitrification submodel

Two types of files are needed to run EPIC: (1) input data files and (2) parameter files (Wang et al., 2012). Input data files are needed to provide to the model: (a) historical daily weather (solar radiation, air temperature, precipitation, relative humidity, wind speed), (b) average monthly weather parameters for simulating daily weather, (c) soil properties (depth, bulk density, field capacity, wilting point, pH, organic C concentration, total N concentration, initial NO$_3$ concentration), and (d) management schedules concerning tillage, fertilization, irrigation, and crop operations. Parameter files are needed to specify crop, tillage, fertilizer, and pest characteristics. In addition, other files are needed to specify model options, general parameters, and files to specify weather, site, crop, soil, fertilizer, and pest names to perform single or batch runs (Wang et al., 2012).

Selection of model options, parameter values, and specific input data needed to run EPIC1704 with the IMWJ denitrification submodel are presented in Table 1. The only difference in IDN = 3 or IDN = 4 is the calculation of the water film thickness (DW; Eq. (11)); details in SI Appendix 6.3. Calculation of DW). In addition to the original water percolation method in EPIC, two new methods have been implemented recently in EPIC1704 to improve the daily soil water dynamics, particularly in surface soil layers. Setting layer thickness (DZ) will depend on model stability (i.e. model instability will require reduction in DZ; DZ = 0.1 has generally produced stable solutions). Setting the default time interval for solving the gas transport equations (DTG) to 1.0 h generally produces stable solutions of the gas transport equation. Initial gas concentrations (Table 1; CO$_2$ = oxygen; CO$_2$ = carbon dioxide; CN$_2$O = nitrous oxide) by soil layer are entered to provide initial conditions for the gas transport equation. For O$_2$, the values should be entered in decreasing order by depth, while the opposite should be done for the two trace gases. Boundary gas concentrations (air and bottom of soil profile) are hard coded.

The N mineralization-immobilization submodel in EPIC1704 (NCNM) follows the approach used in PHOENIX (McCull et al., 1981). Upper and lower N:C ratios of microbial biomass were noted above (Table 1; PRMT88, nitrite immobilization (PRMT89), and nitrate immobilization (PRMT90) together with the specific base rate of ammonification (PRMT 84) and the maximum rate of N uptake during immobilization (PRMT87). Finally, the Michaelis-Menten constant values XKNS, XKN3, and XKN1 can be either selected from the range provided in Table 1, from literature values (see SI Appendix 6.6. Range and means of Michaelis constant (Km) values reported in the literature), or determined via model optimization (see below Section 3.3. Description of the simulation experiment).

3.2. Description of experimental data used to test the IMWJ denitrification model in EPIC

We used results from a 2-year field experiment conducted in 2007 and 2008 at five locations (four on-farm, one at Michigan St. Univ. W.K. Kellogg Biological Station [KBS]) in Michigan (Hoben et al., 2011) to test the non-linear response of N$_2$O fluxes as a function of linearly increasing N fertilizer rates. Of the five locations, only three had two years of data, of which the KBS site (42–41N, 85–37W) offered the best weather and soil data to parameterize input files and perform simulations due to extensive experimental records. Thus, we selected the KBS site to test the IMWJ model in EPIC.

An N-rate experiment with maize (Zea mays L.) was conducted in 2007 on a Kalamazoo loam (fine-loamy, mixed, mesic Typic Hapludalf) and repeated in 2008 on an adjacent field on the same soil series. Each crop of maize followed a crop of soybean (Glycine max L. Merr.). These fields had been under grain production following management practices common to the region before initiation of the experiment. Winter wheat (Triticum aestivum L.) was grown as a cover crop after soybean harvest and was terminated with herbicides prior to maize planting. The experimental design was a randomized complete block design with six rates of N (0, 45, 90, 135, 180, and 225 kg N ha$^{-1}$) and four replications. Fertilizer urea was broadcast and incorporated to a depth of 10 cm two days before maize planting in early May. Further experimental details can be found in Hoben et al. (2011).

Static chambers were used to obtain gas samples for determination of N$_2$O concentration and subsequent calculation of N$_2$O fluxes. Gas samples for N$_2$O flux determination were obtained once before planting, every other day after fertilization for 15 days, then weekly for 30 days, and finally every 10–14 days after 45 days until crop harvest. For details on gas sampling, concentration measurements, and flux calculations see Hoben et al. (2011).

3.3. Description of the simulation experiment

Information about file structure and content needed to perform single to multiple EPIC runs with a Fortran-based executable can be obtained from http://epicapex.tamu.edu/manuals-and-publications/

To prepare the weather data for the simulations, daily records of precipitation, air temperature, solar radiation, wind direction and speed, and relative humidity were retrieved from the KBS Long Term Ecological Research site (http://liter.kbs.msu.edu/datatables/)
for the period 1988–2008. The soil input data were obtained based on the characteristics of the Kalamazoo loam series (SSURGO, Soil Survey Geographic Database; http://www.ncrc.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627) for horizon depth, water limits, saturated conductivity, texture, and soil organic carbon. The soil properties were modified with available site-specific soil data (texture, bulk density, soil organic carbon, and water limits).

Simulations were initiated with a 15-year spin-up run with a maize-soybean rotation to represent historical land management followed by the one year considered in the Hoben et al. (2011) experiment as described above. The final year of the spin-up simulation included a soybean crop followed by a winter wheat cover crop terminated in spring of the measurement year. Finally, the maize crop during the measurement year was fertilized with the various N rates as above. Initial conditions for soil organic carbon and cation exchange capacity were adjusted per data reported in Hoben et al. (2011) and data from nearby experiments on the same soil series. Finally, we used measured N2O fluxes and surface soil inorganic N from 2007 to calibrate the model and from 2008 to validate the model as described in the following Section. Model optimization for the 2007 calibration dataset yielded the following values for the Michaelis–Menten constant values: XKN3 = 36.9, XKN3 = 21.0, and XKN1 = 9.9.

4. Results and discussion

4.1. Growing season conditions and maize yields at KBS during 2007 and 2008

As documented by Hoben et al. (2011), maize experienced periods of drought during both growing seasons. In 2007, annual precipitation was equal to the 30-yr normal (885 mm) and growing-season precipitation (May–October) was 5% below the normal (529 mm). However, monthly precipitation was below normal during May (−21%), June (−34%), July (−66%), and September (−36%). In 2008, annual precipitation exceeded the normal by 20% and growing-season precipitation was 19% above the normal. Again, monthly precipitation was significantly below normal during May (−39%) and August (−72%). Not surprisingly, reported mean maize (dry) yields were low in both years (3.14 ± 0.05 Mg ha⁻¹ in 2007 and 3.05 ± 0.19 Mg ha⁻¹ in 2008). In 2007, maize yields did not respond to fertilizer N application while in 2008 there was a polynomial yield response to N application, which peaked at the rate of 90 kg N ha⁻¹. However, simulated yields did not show any response to fertilizer N application in either year. In 2007, the mean simulated yield was 8% lower than the observed (2.89 ± 0.00 Mgha⁻¹) while in 2008 it was 55% higher than the observed (4.72 ± 0.08 Mg ha⁻¹) (Table 2). In both years, the yield difference between observed and simulated yields was statistically significant at p < 0.01. In both years, there was a lack of correlation between observed and simulated yields (R² = 0.03NS; R² = 0.01NS). In both years as well, differences in simulated yields were largely explained by water stress. In 2007, EPIC simulated 70 days of water stress days during the growing season while in 2008 the number of simulated stress days was 59. Apparently, the effect of simulated water stress on yield in 2008 was less impactful than in 2007 leading to the yield differences between simulated values and reported observations during the second year (Hoben et al., 2011).

4.2. Observed and simulated (A) daily and (B) cumulative N₂O fluxes at KBS for six N rates in 2007 and 2008

As described above, in each year, for each N rate treatment, there were 26–30 observations of N₂O flux available for comparison against simulated N₂O fluxes. In contrast, the simulated daily N₂O fluxes were available for the entire growing season (∼153 days)
where each daily flux resulted from the sum of 24 hourly fluxes. Thus, comparisons of simulated vs. measured daily fluxes were restricted to days with available observations while comparisons of seasonal N₂O-fluxes were made between cumulative fluxes resulting from summation of daily simulated values and fluxes obtained from linear interpolation of observed fluxes.

Fig. 2A displays observed and simulated average daily N₂O fluxes as affected by N rates during the calibration (2007) and the validation (2008) years. Similarly, Fig. 2B shows observed and simulated cumulative N₂O fluxes as influenced by N rates during the calibration and validation years. In both comparisons, there was a clear correlation between average observed and simulated values ($R^2_{2007} = 0.918, p < 0.003; R^2_{2008} = 0.778, p < 0.02$). A more detailed comparison revealed statistically significant correlations (Fig. 3) between observed and simulated daily N₂O fluxes arranged by N rate and year. Occasional flux under-predictions at N rates >135 kg N ha⁻¹ occurred in both years.

Observed average daily N₂O fluxes increased exponentially with N rate in both years (Fig. 2A) (Hoben et al., 2011). In 2007, simulated fluxes approximated the observed fluxes in magnitude but the
relationship was linear instead of exponential. In 2008, the slope of the linear increase of the simulated N2O fluxes was less pronounced than the observed fluxes. In contrast, observed cumulative N2O fluxes showed an exponential behavior only in 2007. While an exponential fit was also used to describe the 2008 data, the unexpectedly low cumulative N2O flux observed for the 180 N rate opens the possibility that, after removal of the data point, a linear fit would have been an equal or better model (adjusted $R^2 = 0.98**$) relative to the exponential fit (adjusted $R^2 = 0.97**$). Simulated cumulative fluxes followed the increasing trends of the observations but there was a closer match between observed and simulated fluxes in 2008 than in 2007.

Three reasons are offered to help explain the simulated linear instead of exponential increase in average daily and cumulative N2O fluxes in response to six rates of N application. First, there was a rather modest observed and simulated increase in maize biomass, which limited the increase in root respiration and thus constrained the demand of electron acceptors. Second, microbial respiration increased curvilinearly in response to N additions reaching a $\sim 10\%$ increase with the highest rate ($Y_{2007} = -2E-6X^2 + 8E-4X + 1.01$, $R^2 = 0.86**$; $Y_{2008} = -1E-6X^2 + 8E-4X + 1.0, 0.98**$). And last, both observed and simulated soil NO$_3^-$ were highly correlated (Table 2) and both increased linearly in response to N fertilization (R-squares > 0.98 for observed and simulated values; see Table 2 in Hoben et al. (2011) for observed values). However, while the observed relationship between mineral N and N2O flux was exponential ($Y_{2007} = 1.2E0.03X, R^2 = 0.99**$; $Y_{2008} = 2.32E0.02X, R^2 = 0.98**$) the simulated relationship between mineral N and N2O flux was linear ($Y_{2007} = 1.43E-2X + 0.97, R^2 = 0.98**$; $Y_{2008} = 2.17E-2X + 0.76, 0.99**$). Whether linear or exponential, the results are consistent with experimental data showing greater potential for denitrifiers to produce more N2O relative to N2 at higher levels of N input/NO$_3^-$ availability (Senbayram et al., 2012). The change in product N2O/(N2+O2) ratios as a function of NO$_3^-$ availability could not be tested here due to lack of N2 data and thus remains a topic of research.

Nonlinear increases of N2O fluxes in response to linear rates of N application up to 300 kg N ha$^{-1}$ have been simulated also with the ecosys model after previous parameterization using agronomic and eddy covariance data from fertilized fields near Ottawa, Canada (Grant et al., 2006). The reported simulated exponential rise, however, was tenuous enough allowing for the possibility to describe the relationship between N$_2$O flux and N rate with a linear fit. Global meta-analysis (Bouwman et al., 2002; Kim et al., 2013; Scherbak et al., 2014) and modeling (Philbert et al., 2012, 2014) strongly suggests a nonlinear rise of N$_2$O fluxes in response to N additions, especially when crop needs are exceeded. In our study, applied N rates exceeded crop N needs as seen in the flat yield response caused by droughty conditions. While simulated increases in microbial respiration, CO$_2$ flux, and soil NO$_3^-$ help
explain the simulated linear increases in N₂O flux, there remains a clear need to improve/develop modeling mechanisms in EPIC to capture the exponential behavior of observed N₂O flux in response to N rate reported by Hoben et al. and other experiments (Hoben et al., 2011; Shcherbak et al., 2014).

Understanding the response of N₂O emissions to fertilizer N application has policy and practical implications. Regarding the policy implication, the observed and simulated results presented here can be used to evaluate the IPCC Tier 1 emission factor (1% of N inputs converted to N₂O) (Fig. 4). Simulated responses decreased exponentially with N rate in both years, were higher than the 1% factor at lower N rates, and approached the 1% factor at higher rate. The observed responses also showed exponential decreased with N rate. The observed factor was lower than 1% in 2007 while it surpassed slightly the IPCC factor in 2008.

Concerning a practical application, exponential models—based in part on data from Hoben et al. (2011)—form the basis of N₂O mitigation protocols at three of the major international carbon standard organizations (Verified Carbon Standard (VCS). http://www.v-c-s.org/; American Carbon Registry (ACR). http://americancarboneregistry.org/; and Climate Action Reserve (CAR). http://www.climateactionreserve.org/; Millar et al., 2010, 2012, 2013). These protocols allow farmers to convert their N₂O emissions reductions to equivalent units of carbon dioxide (CO₂e) that can be traded as carbon credits on environmental markets to generate income.

There are pros and cons to using emissions factors (Tier 1) and more complex process-based models (Tier 3) in this context. In both cases, the use of empirical data to validate model performance and quantify uncertainty is essential. For example, Tier 1 models are more straightforward to use, less costly to operate, and often offer similar or improved performance in estimating N₂O emissions and mitigation. However, they are inherently limited in their application if multiple management practices are being investigated concurrently and likely less reliable in estimating fluxes over shorter periods. When options are available, model selection should be made based on intended use (Hillier et al., 2016).

4.3. Analysis of stocks and fluxes of selected variables related to microbial denitrification simulated with EPIC

Nitrous oxide fluxes at the soil surface arise in response to complex physical and biological interactions that occur across time and space. Fig. 5 illustrates the spatiotemporal dynamics of liquid and gaseous ions and molecules simulated by EPIC as they interact in the soil and, in the case of CO₂, N₂O, and N₂ evolve into the atmosphere. The figure shows precipitation, N₂O fluxes at the soil surface, soil water, N₂O in liquid and gas phases, NO₃⁻, and O₂ in gas phase. The first column of plots in the illustration corresponds to the 0 kg N ha⁻¹ fertilization rate while the second column corresponds to the 135 kg N ha⁻¹ rate.

The first noticeable event is the N₂O flux simulated (but lacking observations) in early April in both unfertilized and fertilized plots. During that period, soil water content was relatively high in the top half of the soil profile. Concurrently, (a) O₂ concentration in the gas phase was starting to increase in the top 50-cm soil depth but remained low throughout the rest of the soil profile, (b) nitrate levels were low throughout the soil profile, and (c) there was simulated N₂O accumulation at depth. All these events seem to coincide with the release of N₂O to the atmosphere via the gas phase and likely aided by bubbling events.

The second event of N₂O release started soon after fertilization and maize planting in early May. Observed and simulated N₂O increased rapidly during this period, peaked in mid-June, coinciding with a rainy period, and then declined (rapidly at first until the end of June, gradually afterwards) toward the end of July. Nitrate levels in the top soil layers were elevated during this period, especially in June. This seems to support the hypothesis that the peak release of N₂O during the rainy period in June corresponded to high NO₃⁻ levels in surface soils, periodic high levels of soil water content, and restricted entrance of O₂ into the soil. A significant rainy period toward the end of September seemed to have caused small observed and simulated N₂O releases. We surmise this was due to low levels of nitrates in the soil profile.

5. Summary and conclusions

Here we have documented IMWJ, a novel microbial denitrification model implemented in the terrestrial ecosystem model EPIC. The IMWJ model is based on fundamental principles of biology, chemistry, and physics. Provided the EPIC model is calibrated well for plant productivity, water, carbon, and nutrient cycling, the IMWJ submodel requires further calibration of only a few parameters, especially the affinity coefficients used in the Michaelis–Menten competitive inhibition equations.
We have tested the IMWJ model against data from an experiment designed to test the generation of N2O fluxes after applying six rates of fertilizer N to maize plots. The modeled data tracked the measured increase of the daily and seasonal N2O fluxes. However, the shape of the 3-fold increase in N2O fluxes was simulated as linear instead of the measured exponential response. It should be noted that both the measured and modeled N2O-flux responses arose upon the sudden change in fertilization regime (i.e., onetime fertilization following a common management history).

We conclude that EPIC—implemented with the IMWJ option—could approximate acceptably well the timing and magnitude of N2O fluxes plus several environmental variables such as crop yields (and the lack of yield response to nitrogen application due to droughty conditions), water stress, surficial soil-water dynamics, and nitrate mass in surface layers after fertilization. However, the model did not capture the observed exponential trend in N2O fluxes (Hoben et al. 2011). Detailed experiments comparing simulated and measured N2O fluxes under variable N rates as was done here are scarce in the literature. Further model testing of EPIC+IMWJ, alone or in ensemble with other models, using data from comprehensive experiments will be essential to discover areas of model improvement and increase the accuracy of N2O predictions under a wide range of environmental conditions.

Acknowledgements

We thank J. Hoben for data sharing and experimental knowledge, M.L. Cabrera for reviews of the denitrification FORTRAN program, E.J. Cooter for testing and feedback on early versions of the denitrification model, and two anonymous reviewers for their critical comments and useful suggestions. Research supported by (a) US DOE Office of Science funding to Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSITE) (DE-AC05–76RL01830) and Great Lakes Bioenergy Research Center (GLBRC) (DE-FC02–07ER64494); (b) USDA CSREE funding to Consortium for Agricultural Soils Mitigation of Greenhouse Gases (CASMGS) (Award no. 2001–38700–11092); and (c) USDA NIFA funding to Dairy CAP (Award no. 2013–68002–20525), and (d) the NSF Long-term Ecological Research Program (DEB 1027253) at the Kellogg Biological Station, and by Michigan State University AgBioResearch. D.E. Schwab thanks E. Schmid and BOKU (University of Natural Resources and Life Sciences, Vienna; 1; Austria) for guidance and support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ecolmodel.2017.06.007.

References

Literature Cited

